首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   57篇
  国内免费   6篇
  2024年   3篇
  2023年   24篇
  2022年   50篇
  2021年   109篇
  2020年   59篇
  2019年   54篇
  2018年   75篇
  2017年   50篇
  2016年   63篇
  2015年   87篇
  2014年   95篇
  2013年   95篇
  2012年   117篇
  2011年   111篇
  2010年   55篇
  2009年   53篇
  2008年   51篇
  2007年   47篇
  2006年   36篇
  2005年   42篇
  2004年   38篇
  2003年   38篇
  2002年   23篇
  2001年   5篇
  2000年   12篇
  1999年   8篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   7篇
  1991年   10篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1962年   1篇
排序方式: 共有1496条查询结果,搜索用时 15 毫秒
71.
Length–weight relationships (LWR) are reported for seven fish species from the upper Pelus River, Kuala Kangsar district, Perak, Malaysia. This river is located in a remote area and supplies fishes for the aboriginal peoples. Fish samplings were conducted in three different seasons, the dry (June 2014), wet (August 2014), and moderately wet (April 2015). All samples were collected using fish electro–shocker and scoop nets with a 1 cm mesh size. A total of seven LWRs were unknown to FishBase, and four new maximum fish lengths were identified in the study.  相似文献   
72.
New aziridine 2‐phosphonic acids were prepared by monohydrolysis of the aziridine 2‐phosphonates that were obtained by the modified Gabriel?Cromwell reaction of vinyl phosphonate or α‐tosylvinyl phosphonate with a primary amine or a chiral amine. The cellular cytotoxicity of these compounds was tested against the HCT‐116 colorectal cancer cell lines and the CCD‐18Co normal colon fibroblast lines using the MTT assay. Three of the synthesized phosphonic acid derivatives 2e (ethyl hydrogen {(2S)‐1‐[(1S)‐1‐(naphthalen‐2‐yl)ethyl]aziridin‐2‐yl}phosphonate), 2h (ethyl hydrogen (1‐benzylaziridin‐2‐yl)phosphonate), and 2i (ethyl hydrogen (1‐cyclohexylaziridin‐2‐yl)phosphonate) showed higher cytotoxicity than the reference cancer treatment agent etoposide. Cell death was through a robust induction of apoptosis even more effectively than etoposide, a well‐known apoptosis inducing agent.  相似文献   
73.
Off-road vehicle driving is considered as main contributor to land degradation in arid regions. This study examined the impact of off-road vehicles (ORV) on soil and vegetation in a natural recreational desert meadow of Raudhat Khuraim, Saudi Arabia. Vegetation canopy cover and plant height away from road tracks were assessed. Also, species density and canopy cover, bare ground cover and soil attributes were assessed in four microhabitats; tracks, inter-tracks, verges, and away from vehicle tracks (undisturbed natural areas). Results show that the cover of forbs and grasses was negatively associated with distance from road verges. It was observed that the height of woody species responded negatively to distance away from tracks. Cover of native species decreased under verge, inter-track and track microhabitats giving more opportunity for weeds to flourish. Bare ground was highest (60.7%) in tracks. ORV impact on soil bulk density was clear with an increase of 38% under tracks compared to soils of undisturbed natural vegetation and a similar decrease in porosity was observed. On the other hand, soil electrical conductivity was significantly higher (5.45 mS cm?1) under disturbance compared to 1.32 mS cm?1 in undisturbed natural vegetation. Organic matter and nitrogen were not affected significantly by ORV disturbance. The results emphasize that managing off-road vehicle driving is essential for conserving native vegetation.  相似文献   
74.
Objectives: Nucleotide oligomerization domain 2 (NOD2) and myeloid differentiation protein 2 (MD-2) have crucial roles in the innate immune system. NOD2 is a member of the NOD-like receptor (NLR) family of pattern recognition receptors (PRRs), while MD-2 is a co-receptor for Toll-like receptor 4 (TLR4), which comprises another group of PRRs. Genetic variations in the NOD2 and MD-2 genes may be susceptibility factors to viral pathogens including hepatitis B virus (HBV). We investigated whether polymorphisms at NOD2 (rs2066845 and rs2066844) or at MD-2 (rs6472812 and rs11466004) were associated with susceptibility to HBV infection and advancement to related liver complications in a Saudi Arabian population. Methods: A total of 786 HBV-infected patients and 600 healthy uninfected controls were analyzed in the present study. HBV-infected patients were categorized into three groups based on the clinical stage of the infection: inactive HBV carriers, active HBV carriers, and patients with liver cirrhosis + hepatocellular carcinoma (HCC). Results: All four SNPs were significantly associated with susceptibility to HBV infection although none of the SNPs tested in NOD2 and MD-2 were significantly associated with persistence of HBV infection. We found that HBV-infected patients that were homozygous CC for rs2066845 in the NOD2 gene were at a significantly increased risk of progression to HBV-related liver complications (Odds Ratio = 7.443 and P = 0.044). Furthermore, haplotype analysis found that the rs2066844-rs2066845 C-G and T-G haplotypes at the NOD2 gene and four rs6472812-rs11466004 haplotypes (G-C, G-T, A-C, and A-T) at the MD-2 gene were significantly associated with HBV infection in the affected cohort compared to those found in our control group. Conclusion: We found that the single nucleotide polymorphisms rs2066844 and rs2066845 at NOD2 and rs6472812 and rs11466004 at MD-2 were associated with susceptibility to HBV infection in a Saudi population.  相似文献   
75.
Raman spectroscopy using fiber optic probe combines non‐contacted and label‐free molecular fingerprinting with high mechanical flexibility for biomedical, clinical and industrial applications. Inherently, fiber optic Raman probes provide information from a single point only, and the acquisition of images is not straightforward. For many applications, it is highly crucial to determine the molecular distribution and provide imaging information of the sample. Here, we propose an approach for Raman imaging using a handheld fiber optic probe, which is built around computer vision–based assessment of positional information and simultaneous acquisition of spectroscopic information. By combining this implementation with real‐time data processing and analysis, it is possible to create not only fiber‐based Raman imaging but also an augmented chemical reality image of the molecular distribution of the sample surface in real‐time. We experimentally demonstrated that using our approach, it is possible to determine and to distinguish borders of different bimolecular compounds in a short time. Because the method can be transferred to other optical probes and other spectroscopic techniques, it is expected that the implementation will have a large impact for clinical, biomedical and industrial applications.   相似文献   
76.
77.
78.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   
79.
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.  相似文献   
80.
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号