首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   3篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有83条查询结果,搜索用时 125 毫秒
61.
The O(6)-alkylguanine-DNA alkyltransferase inactivator O(6)-benzylguanine was administered to BALB/c mice either alone or before exposure to 1,3-bis(2-chloroethyl)-1-nitrosourea to study the role of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase in the protection of the testis against anti-cancer O(6)-alkylating agents. Exposure of the mice to 1, 3-bis(2-chloroethyl)-1-nitrosourea or O(6)-benzylguanine alone did not produce any marked testicular toxicity at the times studied. Testicular O(6)-alkylguanine-DNA alkyltransferase concentrations were assayed between 0 and 240 min after O(6)-benzylguanine treatment and were shown to be > 95% depleted 15 min after treatment with O(6)-benzylguanine and remained at > 95% at all the times assayed. Histological examination, the reduction in testicular mass and the induction of spermatogenic cell apoptosis showed that this depletion significantly potentiated 1, 3-bis(2-chloroethyl)-1-nitrosourea-induced testicular damage after treatment. Major histological damage was apparent 42 days after treatment, demonstrating that the stem spermatogonia were significantly affected by the combination. These results demonstrate that O(6)-alkylguanine-DNA alkyltransferase plays a significant role in protecting the spermatogenic cells from damage caused by DNA alkylation and indicate that the observed toxicity may result from damage to stem spermatogonia.  相似文献   
62.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   
63.
Cell suspension containing normal or tumor epithelium were readily obtained by enzymatically digesting rat mammary glands from perphenazine-treated (prolactin-hypersecreting) cycling, female virgin animals or hormone- responsive mammary tumors from animal treated with dimethylbenzanthracene. Cell suspensions were fractioned into predominantly epithelial and predominantly stromal cells by their differential rates of attachment to culture dishes. Both normal mammary and tumor epithelial cells were characterized by the presence of specific cell-junctional complexes, desmosome-like structures, surface microvilli, and their ability to synthesize casein. Serum-dependent protease activity was greater in cultures derived from tumors, and cells from such cultures grew in agarose whereas those from the non-neoplastic gland did not. The addition of prolactin to the culture medium stimulated DNA synthesis in primary or secondary epithelial cultures from tumors, whereas additional insulin and hydrocortisone with prolactin were required for similar levels of DNA synthesis in cultures from non-neoplastic glands. The fraction of cells synthesizing DNA was, however, smaller than that with 10 percent serum measured in the same time period. Both growth hormone and epidermal growth factor stimulated DNA synthesis but to a lesser extent than did prolactin. Prolactin with hydrocortisone and insulin were relatively inactive in promoting DNA synthesis of the nonepithelial cells whereas pituitary fibroblast growth factor was more active. These mitogenic effects were obtained when the hormones were added to the medium at near physiological concentrations, and paralleled the known activities of the hormones in control of mammary gland growth and development in the rat.  相似文献   
64.
We have developed and tested a new time-effective and accurate hybrid QM//MM generalized second-order vibrational perturbation theory (GVPT2) approach. In this approach, two different levels of theory were used, a high level one (DFT) for computing the harmonic spectrum and a lower fast one (Molecular Mechanic) for the anharmonic corrections. To validate our approach, we used B2PLYP/def2-TZVPP as the high-level method, and the MMFF94 method for the anharmonic corrections as the low-level method. The calculations were carried out on 28 molecules (containing from 2 to 47 atoms) covering a broad range of vibrational modes present in organic molecules. We find that this fast hybrid method reproduces the experimental frequencies with a very good accuracy for organic and bio-molecules. The root-mean-square deviation (RMSD) is about 27 cm -1 while the full B3LYP/SNSD simulation reproduces the experimental values with a RMSD of about 41 cm -1. Concerning the computational time, the hybrid B2PLYP//MMFF94 approach considerably outperforms the full B3LYP/SNSD: for the larger molecule of our set (a dipeptide containing 47 atoms), the anharmonic corrections are 2300 times faster using hybrid MMFF94 rather than full B3LYP, which represents an additional computation time to the harmonic calculation of merely 9 %, instead of 32100 % with the full B3LYP approach. This time-effective and accurate alternative to the traditional GVPT2 approach will allow the spectroscopy community to explore anharmonic effects in larger biomolecules, which are generally unaffordable.  相似文献   
65.
Crocus sativus lectin recognizes Man3GlcNAc in the N-glycan core structure   总被引:2,自引:0,他引:2  
Crocus sativus lectin (CSL) is one of the truly mannose-specific plant lectins that has a unique binding specificity that sets it apart from others. We studied sugar-binding specificity of CSL in detail by a solution phase method (fluorescence polarization) and three solid phase methods (flow injection, surface plasmon resonance, and microtiter plate), using a number of different glycopeptides and oligosaccharides. CSL binds the branched mannotriose structure in the N-glycan core. Substitution of the terminal Man in the Manalpha(1-3)Man branch with GlcNAc drastically decreases binding affinity much more than masking of the terminal Man in the Manalpha(1-6)Man branch. Most interestingly, the beta-Man-linked GlcNAc in N-glycan core structure contributes greatly to the binding. The effect of this GlcNAc is so strong that it can substantially offset the negative effect of substitution on the nonreducing terminal Man residues. On the other hand, the GlcNAc that is usually attached to Asn in N-glycans and the l-Fuc linked at the 6-position of the GlcNAc are irrelevant to the binding. A bisecting GlcNAc neither contributes to nor interferes with the binding. This unique binding specificity of CSL offers many possibilities of its use in analytical and preparative applications.  相似文献   
66.
Lipoic acid (LA) is a widely used antioxidant that protects mitochondria from oxidative damage in vivo. Much of this protection is thought to be due to the reduction of LA to dihydrolipoic acid (LAH(2)). This reduction is catalyzed in vivo by thioredoxin, thioredoxin reductase (TrxR), and lipoamide dehydrogenase. We hypothesized that specifically targeting LA to mitochondria, the site of most cellular reactive oxygen species production, would make it a more effective antioxidant. To do this, we made a novel molecule, MitoLipoic acid, by attaching lipoic acid to the lipophilic triphenylphosphonium cation. MitoL was accumulated rapidly within mitochondria several-hundred fold driven by the membrane potential. MitoL was reduced to the active antioxidant dihydroMitoLipoic acid by thioredoxin and by lipoamide dehydrogenase but not by TrxR. In isolated mitochondria or cells MitoL was only slightly reduced (5-10%), while, in contrast, LA was extensively reduced. This difference was largely due to the reaction of LA with TrxR, which did not occur for MitoL. Furthermore, in cells MitoL was quantitatively converted to an S-methylated product. As a consequence of its lack of reduction, MitoL was not protective for mitochondria or cells against a range of oxidative stresses. These results suggest that the protective action of LA in vivo may require its reduction to LAH(2) and that this reduction is largely mediated by TrxR.  相似文献   
67.
细胞壁是酵母细胞区别于哺乳动物细胞的重要特征结构。酵母细胞壁的结构组成、合成、再生等与酵母自身繁殖及环境胁迫压力密切相关。目前,酵母孢子壁的形成机理、调控过程机制及孢子壁合成相关基因的功能尚未研究清楚。本文以酿酒酵母为例,简要描述酵母孢子壁的形成过程,重点阐述孢子壁甘露糖层、葡聚糖层、壳聚糖层和二酪氨酸层的结构组成及其合成相关基因的国内外研究进展,以期为抗真菌药物的新靶点研究提供参考。  相似文献   
68.

Background  

Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD) is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP) have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs) from amino acid sequence using bioinformatics tools.  相似文献   
69.

Background  

The nucleus, a highly organized organelle, plays important role in cellular homeostasis. The nuclear proteins are crucial for chromosomal maintenance/segregation, gene expression, RNA processing/export, and many other processes. Several methods have been developed for predicting the nuclear proteins in the past. The aim of the present study is to develop a new method for predicting nuclear proteins with higher accuracy.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号