首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   13篇
  74篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   2篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
71.
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.  相似文献   
72.
73.

Setting

Public tuberculosis (TB) clinics in urban Morocco.

Objective

Explore risk factors for TB treatment default and develop a prediction tool. Assess consequences of default, specifically risk for transmission or development of drug resistance.

Design

Case-control study comparing patients who defaulted from TB treatment and patients who completed it using quantitative methods and open-ended questions. Results were interpreted in light of health professionals’ perspectives from a parallel study. A predictive model and simple tool to identify patients at high risk of default were developed. Sputum from cases with pulmonary TB was collected for smear and drug susceptibility testing.

Results

91 cases and 186 controls enrolled. Independent risk factors for default included current smoking, retreatment, work interference with adherence, daily directly observed therapy, side effects, quick symptom resolution, and not knowing one’s treatment duration. Age >50 years, never smoking, and having friends who knew one’s diagnosis were protective. A simple scoring tool incorporating these factors was 82.4% sensitive and 87.6% specific for predicting default in this population. Clinicians and patients described additional contributors to default and suggested locally-relevant intervention targets. Among 89 cases with pulmonary TB, 71% had sputum that was smear positive for TB. Drug resistance was rare.

Conclusion

The causes of default from TB treatment were explored through synthesis of qualitative and quantitative data from patients and health professionals. A scoring tool with high sensitivity and specificity to predict default was developed. Prospective evaluation of this tool coupled with targeted interventions based on our findings is warranted. Of note, the risk of TB transmission from patients who default treatment to others is likely to be high. The commonly-feared risk of drug resistance, though, may be low; a larger study is required to confirm these findings.  相似文献   
74.
We isolated and characterized three spontaneous mutations leading to trimethylamine N-oxide (TMAO)-independent expression of the tor operon encoding the TMAO-reductase anaerobic respiratory system in Escherichia coli. The mutations lie in a new tor regulatory gene, the torS gene, which probably encodes a sensor protein of a two-component regulatory system. One mutation, which leads to full TMAO-constitutive expression, is a 3-amino-acid deletion within the potential N-terminal periplasmic region, suggesting that this region contains the TMAO-detector site. For the other two mutations, a further induction of the tor operon is observed when TMAO is added. Both are single substitutions and affect the linker region located between the detector and the conserved transmitter domains. Thus, as proposed for other sensors, the TorS linker region might play an essential role in propagating conformational changes between the detector and the cytoplasmic signalling regions. The TorR histidine kinase is an unorthodox sensor that contains a receiver and a C-terminal alternative transmitter domain in addition to the domains found in most sensors. Previously, we showed that TMAO induction of the tor operon requires the TorR response regulator and the TorT periplasmic protein. Additional genetic data confirm that torS encodes the sensor partner of TorR and TorT. First, insertion within torS abolishes tor operon expression whatever the growth conditions. Second, overexpressed TorR bypasses the requirement for torS, whereas the torT gene product is dispensable for tor operon expression in a torS constitutive mutant. This supports a signal-transduction cascade from TorT to TorR via TorS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号