首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   13篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有79条查询结果,搜索用时 93 毫秒
31.
All-trans retinoic acid (ATRA) has only limited single agent activity in AML without the PML-RARα fusion (non-M3 AML). In search of a sensitizing strategy to overcome this relative ATRA resistance, we investigated the potency of the HDAC class-I selective inhibitor entinostat in AML cell lines Kasumi-1 and HL-60 and primary AML blasts. Entinostat alone induced robust differentiation of both cell lines, which was enhanced by the combination with ATRA. This “priming” effect on ATRA-induced differentiation was at least equivalent to that achieved with the DNA hypomethylating agent decitabine, and could overall be recapitulated in primary AML blasts treated ex vivo. Moreover, entinostat treatment established the activating chromatin marks acH3, acH3K9, acH4 and H3K4me3 at the promoter of the RARβ2 gene, an essential mediator of retinoic acid (RA) signaling in different solid tumor models. Similarly, RARβ2 promoter hypermethylation (which in primary blasts from 90 AML/MDS patients was surprisingly infrequent) could be partially reversed by decitabine in the two cell lines. Re-induction of the epigenetically silenced RARβ2 gene was achieved only when entinostat or decitabine were given prior to ATRA treatment. Thus in this model, reactivation of RARβ2 was not necessarily required for the differentiation effect, and pharmacological RARβ2 promoter demethylation may be a bystander phenomenon rather than an essential prerequisite for the cellular effects of decitabine when combined with ATRA. In conclusion, as a “priming” agent for non-M3 AML blasts to the differentiation-inducing effects of ATRA, entinostat is at least as active as decitabine, and both act in part independently from RARβ2. Further investigation of this treatment combination in non-M3 AML patients is therefore warranted, independently of RARβ2 gene silencing by DNA methylation.  相似文献   
32.
Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.  相似文献   
33.
Forty-two bacterial isolates from root nodules of Argyrolobium uniflorum growing in the arid areas of Tunisia were characterized by phenotypic features, RFLP, and sequencing of PCR-amplified 16S rRNA genes. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at temperatures up to 40 degrees C. Phylogenetically, the new isolates were grouped in the genera Sinorhizobium (27), Rhizobium (13), and Agrobacterium (2). Except for the 2 Agrobacterium isolates, all strains induced nodulation on Argyrolobium uniflorum, but the number of nodules and nitrogen fixation efficiency varied among them. Sinorhizobium sp. strains STM 4034, STM 4036, and STM 4039, forming the most effective symbiosis, are potential candidates for inoculants in revegetalisation programs.  相似文献   
34.
The genetic diversity of 21 faba bean populations was examined using morphological and molecular markers. DNA was extracted from 189 individuals and 8 microsatellite markers were genotyped individually in these 21 populations. A total of 53 alleles were obtained in all populations, with an average of 6.62 alleles per locus. The expected and observed heterozygosity was 0.38 and 0.62 respectively. The average polymorphism index content of SSR markers was 0.61, ranging from 0.31 to 0.81. The unweighted pair group method with arithmetic mean dendrogram clustered all the populations into two groups, each for them subdivided into 3 sub-groups according to geographical origin. Morphological variation showed that the populations were not grouped according to their geographical origin. Therefore, patterns of differentiation of morphological traits did not coincide with molecular differentiation, indicating that morphological variation does not reflect genetic subdivision in studied faba bean populations. Analysis of molecular variance revealed high levels of genetic variation (83%) within population and provides a good base for designing genetic improvement programs. The result of Principal Component Analysis (PCA) revealed that three dimensional principal components (PC1, PC2 and PC3) contributed 40.56% of the total variability and accounted with values of 20.64, 11.22 and 8.70%, respectively. Cluster analysis based on PCA indicated three separate groups of populations. The genetic relationships found between the 21 populations samples were the same in both the PCA and STRUCTURE analysis which support the results observed. These data may serve as a foundation for the development of faba bean breeding programs.  相似文献   
35.
Argan Tree is well known for its precious oil extracted from its seeds particularly used for the nutritional and cosmetic benefits. Because of the high international demand, the argan tree suffers from overexploitation and its cultivation is rare. Thus, the assessment of the genetic variation of this endemic tree is critically important for designing conservation strategies. In the present study and for the first time, genetic diversity of the global natural distribution of argan tree (Argania spinosa L.) in Morocco was assessed. Four IRAP (inter-retrotransposon amplified polymorphism) primer combinations and seven ISSR (inter-simple sequence repeat) primers amplified 164 and 248 scorable polymorphic bands respectively. Polymorphic information content (PIC = 0.27), resolving power (Rp = 15) and marker index (MI = 10.81) generated by IRAP primer combinations were almost identical to those generated by ISSR primers (PIC = 0.27, Rp = 9.16 and MI = 12). AMOVA analysis showed that 49% of the genetic variation was partitioned within populations which is supported by Nei’s genetic differentiation (Gst = 0.5391) and the overall estimate of gene flow (Nm) being 0.4274. The STRUCTURE analysis, PCoA (principal coordinate analysis) and UPGMA (unweighted pair-group method with arithmetic mean) based on the combined data matrices of IRAP and ISSR divided the 240 argan genotypes into two groups. The strong differentiation observed might be due to the geographical distribution of argan tree. Our results provide crucial insight for genetic conservation programs of this genetic resource.  相似文献   
36.
The neutrophil-derived serine protease, cathepsin G (Cat.G), has been shown to induce myocyte detachment and apoptosis by anoikis through down-regulation of focal adhesion (FA) signaling. However, the mechanisms that control FA protein stability and turnover in myocytes are not well understood. Here, we have shown that the Casitas b-lineage lymphoma (c-Cbl), adaptor protein with an intrinsic E3 ubiquitin ligase activity, is involved in FA and myofibrillar protein stability and turnover in myocytes. Cat.G treatment induced c-Cbl activation and its interaction with FA proteins. Deletion of c-Cbl using c-Cbl knock-out derived myocytes or inhibition of c-Cbl ligase activity significantly reduced FA protein degradation, myofibrillar degeneration, and myocyte apoptosis induced by Cat.G. We also found that inhibition of the proteasome activity, but not the lysosome or the calpain activity, markedly attenuated FA and myofibrillar protein degradation induced by Cat.G. Interestingly, c-Cbl activation induced by Cat.G was mediated through epidermal growth factor receptor (EGFR) transactivation as inhibition of EGFR kinase activity markedly attenuated c-Cbl phosphorylation and FA protein degradation induced by Cat.G. These findings support a model in which neutrophil protease Cat.G promotes c-Cbl interaction with FA proteins, resulting in enhanced c-Cbl-mediated FA protein ubiquitination and degradation, myofibril degradation, and subsequent down-regulation of myocyte survival signaling.  相似文献   
37.
Ulvan, carrageenan, alginate and laminarin were tested in olive trees’ twigs to elicit phenolic metabolism and control verticillium wilt of olive (VWO) caused by Verticillium dahliae. The elicitation effect was determined through phenylalanine ammonia-lyase activity, total polyphenol content and lignin content. VWO was assessed in twigs previously elicited (24?h) and maintained in a solution containing bio-elicitors (2?g/L) and conidial suspension (106?conidia/mL). Our results showed stimulation of the phenolic metabolism and the decline of wilt symptoms. Ulvan reduced significantly the area under the disease progress curve for severity to 39.9% and the final incidence to 28.9%. Ulvan and alginate produced significant inhibitory rates on mycelial growth of the fungus in vitro. Seaweed polysaccharides might help to overcome VWO by strengthening the host defense metabolism and restricting the pathogen’s growth.  相似文献   
38.
The isolation and identification of beneficial bacteria from the active phase of composting is considered to be a key bio-quality parameter for the assessment of the process. The aim of this work was the selection and identification of beneficial bacteria from a co-composting experiment of vegetable waste (VW), olive oil mill waste (O2MW), and phosphate sludge (PS). Phosphate-solubilizing strains were isolated from the thermophilic phase using Pikovskaya (PVK) solid medium supplemented with tricalcium phosphate Ca3(PO4) (TCP) as the sole source of phosphorus (P). Therefore, the selected isolate Alcaligenes aquatilis GTE53 was tested to tolerate abiotic stresses (different levels of temperature, variable pH, high salinity and water stress). The isolate was also assessed for indole acetic acid (IAA) and siderophores synthesis, nitrogen fixation, phenol degradation and pathogens inactivation. The quality of the co-composting process was also investigated by monitoring the physico-chemical parameters. The obtained results showed that A. aquatilis GTE53 displayed a higher solubilization index of 2.4 and was efficiently dissolved, up to 162.8 and 247.4 mg·mL−1 of inorganic phosphate from PS and phosphate rock (PR), respectively. A. aquatilis GTE53 exhibited siderophores and IAA release, along with atmospheric nitrogen fixation. In addition to that, A. aquatilis GTE53 showed a high resistance to heat and tolerance to acidic and alkaline pH, high salinity and water stress. Moreover, A. aquatilis GTE53 could degrade 99.2% of phenol from a high-concentrated medium (1100 mg·L−1 of phenol) and can inactivate the most abundant pathogens in industrial wastes: Escherichia coli, Streptococcus sp., Salmonella sp., and Fusarium oxysporum albedinis. Analysis of temperature, pH, electrical conductivity, carbon/nitrogen (C/N) ratio, indicated successful co-composting. An efficient transformation of P to the available form and a great abatement of polyphenols, were also recorded during the process. The findings of this study will help to advance the understanding of A. aquatilis GTE53 functions and will facilitate its application to promote beneficial microbial organisms during composting, thus obtaining a high-quality product.  相似文献   
39.
The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (~60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.  相似文献   
40.
Protein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes. The α(1)-adrenergic receptor agonist norepinephrine selectively activates PKD1, thrombin and PDGF selectively activate PKD2, and endothelin-1 and PMA activate both PKD1 and PKD2. PKC activity is implicated in the α(1)-adrenergic receptor pathway that activates PKD1 and the thrombin- and PDGF-dependent pathways that activate PKD2. Endothelin-1 activates PKD via both rapid PKC-dependent and more sustained PKC-independent mechanisms. The functional consequences of PKD activation were assessed by tracking phosphorylation of CREB and cardiac troponin I (cTnI), two physiologically relevant PKD substrates in cardiomyocytes. We show that overexpression of an activated PKD1-S744E/S748E transgene increases CREB-Ser(133) and cTnI-Ser(23)/Ser(24) phosphorylation, but agonist-dependent pathways that activate native PKD1 or PKD2 selectively increase CREB-Ser(133) phosphorylation; there is no associated increase in cTnI-Ser(23)/Ser(24) phosphorylation. Gene silencing studies provide unanticipated evidence that PKD1 down-regulation leads to a compensatory increase in PKD2 activity and that down-regulation of PKD1 (alone or in combination with PKD2) leads to an increase in CREB-Ser(133) phosphorylation. Collectively, these studies identify distinct roles for native PKD1 and PKD2 enzymes in stress-dependent pathways that influence cardiac remodeling and the progression of heart failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号