首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   9篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   8篇
  2012年   11篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   1篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
91.
There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case–control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR = 0.6, IC 0.37–0.99, p = 0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population.  相似文献   
92.

BACKGROUND:

Hearing loss is the most prevalent human genetic sensorineural defect. Mutations in the CLDN14 gene, encoding the tight junction claudin 14 protein expressed in the inner ear, have been shown to cause non-syndromic recessive hearing loss DFNB29.

AIM:

We describe a Moroccan SF7 family with non-syndromic hearing loss. We performed linkage analysis in this family and sequencing to identify the mutation causing deafness.

MATERIALS AND METHODS:

Genetic linkage analysis, suggested the involvement of CLDN14 and KCNE1 gene in deafness in this family. Mutation screening was performed using direct sequencing of the CLDN14 and KCNE1 coding exon gene.

RESULTS:

Our results show the presence of c.11C>T mutation in the CLDN14 gene. Transmission analysis of this mutation in the family showed that the three affected individuals are homozygous, whereas parents and three healthy individuals are heterozygous. This mutation induces a substitution of threonine to methionine at position 4.

CONCLUSION:

These data show that CLDN14 gene can be i mplicated in the development of hearing loss in SF7 family; however, the pathogenicity of c.11C>T mutation remains to be determined.  相似文献   
93.
94.
This study was aimed to evaluate the oxidant–antioxidant imbalance in the pathogenesis of chronic obstructive pulmonary disease (COPD) in Tunisians. We assessed 16 parameters related to the oxidative status that include malondialdehyde (MDA), total protein carbonyls (PCs), and advanced oxidation protein products (AOPP). We also examined the activity of glutathione peroxydase (GSH-Px), catalase, and superoxide dismutase (SOD) in the plasma and erythrocytes. Levels of total thiols, reduced glutathione (GSH), total antioxidant status (TAS), hydrogen peroxide, ascorbic acid, iron, and protein sulfhydryls were determined using spectrophotometry. We also evaluated the level of nitric oxide (NO) and peroxynitrite in plasma from COPD patients and healthy controls. Estimation of DNA damage was determined using the comet assay. Pulmonary functional tests were performed by body plethysmography. Levels of MDA, PC, DNA damage, and AOPP were significantly increased while total thiols, GSH, and TAS were decreased in COPD patients. GSH-Px activity was higher in COPD patients while no difference was found for catalase and SOD. We also observed a lower level of NO and peroxynitrite in COPD patients. Decreased levels of peroxynitrite were found to correlate with disease progression, as well as with forced expiratory volume in 1 s/forced vital capacity among COPD patients. Multivariate analysis revealed that NO is associated with pathological pathways that help to predict patient outcome independently of the degree of airflow obstruction. These results indicate the presence of a systemic oxidative stress and highlight the importance of NO and peroxynitrite as major effectors in COPD development and airflow obstruction.  相似文献   
95.
96.

SUMMARY

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.  相似文献   
97.
Molecular Biology Reports - Genetic diversity and differences among durum-wheat cultivars evolved in various regions of the world are important for sustainable production in the current climate...  相似文献   
98.
The chemical composition and in vitro antibacterial and cytotoxic activities of the essential oil (EO) of Chiliadenus antiatlanticus (Emb. & Maire) Gómiz, an asteraceous species endemic to the southwest of Morocco, were investigated. The EO yield was 1.07±0.28 %, twenty-seven metabolites were identified representing more than 96.4 % of the total composition. Camphor (35.7 %) and derivatives, borneol (4.9 %) and camphene (4.2 %) together with intermedeol (19.9 %), α-pinene (15.5 %) and (E)-pinocarveol (4.1 %) were the major constituents. An antibacterial activity was noticed against 24 strains (all Gram-positive) out of 71 at MICs values=100 μg/mL. The EO also showed significant toxicity towards liver HepG2 (55.8 % of cell viability) and melanoma B16 4A5 (41.6 % of cell viability) tumor cell lines at 100 μg/mL.  相似文献   
99.
In mammals testicular and epididymal temperature increase impairs spermatogenesis. This experimental study investigates the effects of a mild testis temperature increase (i.e. testis temperature remains below core body temperature) on sperm aneuploidy in men. In 5 fertile volunteers a testicular temperature increase was induced by maintaining the testes at suprascrotal position using specially designed underwear for 15 ± 1 h daily for 120 consecutive days. After heating men were followed for next 180 days. A control group (27 men) was recruited. Semen samples were collected before, during and after heating period and analyzed for chromosomes X, Y and 18 for aneuploidy using FISH. A total of 234,038 spermatozoa were studied by FISH. At day 34 of heating, mean sperm aneuploidy values were not modified. From day 34 of heating until day 45 post heating, FISH evaluation was not possible due to the drastic fall of sperm count. At day 45 post-heating total sperm aneuploidy percentage was twice higher than before heating whereas. Sex disomy (sperm XY18), sex chromosome nullisomy (sperm 18) were significantly higher than controls. These effects were completely reversed at 180 days post heat exposure. Conclusion: A mild rise in testicular temperature significantly increases sperm aneuploidies, reflecting an effect on the meiosis stage of spermatogenesis. The effect of heating was reversible and suggests that recovery of aneuploidy to normal values requires at least two cycles of spermatogenesis. Nonetheless, the low number of volunteers was a limitation of this pilot study and warrants further research on larger population.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号