首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   16篇
  2023年   3篇
  2022年   3篇
  2021年   13篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   11篇
  2015年   5篇
  2014年   17篇
  2013年   28篇
  2012年   31篇
  2011年   20篇
  2010年   7篇
  2009年   13篇
  2008年   18篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
  1959年   1篇
排序方式: 共有272条查询结果,搜索用时 343 毫秒
101.
Even though Gerbillinae rodents represent an important part of the mammalian fauna in North Africa, many gaps remain in our understanding of the distribution, ecology, evolution, and systematics of some lesser known species in this family. We present in this study the most recent findings on two of these species. The first species, Gerbillus simoni Lataste, 1881, is a short-tailed, small gerbil, endemic to North Africa. In Morocco, it is present only in a small area in the northeast, where it has not been caught since 1970. In 2014, we captured a small gerbil in this region that was identified as G. simoni based on morphology and molecular data (cytochrome b gene sequencing). This study represents the first genetic characterization of G. simoni in Morocco and the first one outside Tunisia. Populations from Morocco and Tunisia (mainland and Kerkennah Islands) show very little genetic differentiation. The second species, Gerbillus henleyi de Winton, 1903, is a long-tailed small gerbil that lives in the Sahel and North Africa with an extension to the Middle East. In Morocco, this species was only known in the southwest. Between 2014 and 2015, we have captured four gerbils in the northeast of the country, which were confirmed genetically and morphologically as belonging to this species. This represents an extension of its known distribution of about 370 km to the northeast of the country. These new Moroccan specimens form a distinct lineage. High genetic diversity is observed throughout the geographic range of G. henleyi, suggesting the existence of several cryptic species.  相似文献   
102.
In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA) and SGCG (c. (*) 102A/C) genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c. (*) 102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.  相似文献   
103.
104.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   
105.

Premise

The relationships between reproductive investment, phenotype, and fitness have been broadly studied in cross-pollinated plants in contrast to selfing species, which are considered less interesting in this area because they are supposed to be a dead end in any evolutionary pathway. Still, selfing plants are unique systems to study these questions since the position of reproductive structures and traits related to flower size play an important role in female and male pollination success.

Methods

Erysimum incanum s.l. is a selfing species complex that has three levels of ploidy (diploids, tetraploids, and hexaploids) and traits that are typically associated with the selfing syndrome. Here, we used 1609 plants belonging to these three ploidies to characterize the floral phenotype and spatial configuration of reproductive structures, reproductive investment (pollen and ovule production), and plant fitness. Then, we used structural equation modelling to analyze the relationship between all these variables across ploidy levels.

Results

An increase in ploidy level leads to bigger flowers with anthers exserted farther and more pollen and ovules. In addition, hexaploid plants had higher absolute values for herkogamy, which is positively correlated with fitness. Ovule production significantly mediated the natural selection acting on different phenotypic traits and pollen production, a pattern that is maintained across ploidies.

Conclusions

The changes in floral phenotypes, reproductive investment, and fitness with ploidy level suggest that genome duplication can be a driver for transitions in reproductive strategy by modifying the investment in pollen and ovules and linking them with plant phenotype and fitness.  相似文献   
106.
The principal intracellular symbiotic bacteria of the cereal weevil Sitophilus oryzae were characterized using the sequence of the 16S rDNA gene (rrs gene) and G + C content analysis. Polymerase chain reaction amplification with universal eubacterial primers of the rrs gene showed a single expected sequence of 1,501 bp. Comparison of this sequence with the available database sequences placed the intracellular bacteria of S. oryzae as members of the Enterobacteriaceae family, closely related to the free-living bacteria, Erwinia herbicola and Escherichia coli, and the endocytobiotic bacteria of the tsetse fly and aphids. Moreover, by high-performance liquid chromatography, we measured the genomic G + C content of the S. oryzae principal endocytobiotes (SOPE) as 54%, while the known genomic G + C content of most intracellular bacteria is about 39.5%. Furthermore, based on the third codon position G + C content and the rrs gene G + C content, we demonstrated that most intracellular bacteria except SOPE are A + T biased irrespective of their phylogenetic position. Finally, using the hsp60 gene sequence, the codon usage of SOPE was compared with that of two phylogenetically closely related bacteria: E. coli, a free-living bacterium, and Buchnera aphidicola, the intracellular symbiotic bacteria of aphids. Taken together, these results show a peculiar and distinctly different DNA composition of SOPE with respect to the other obligate intracellular bacteria, and, combined with biological and biochemical data, they elucidate the evolution of symbiosis in S. oryzae. Received: 8 September 1997 / Accepted: 24 October 1997  相似文献   
107.
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.  相似文献   
108.
Both Gram-Positive and Gram-Negative bacteria can secrete outer membrane vesicles (OMVs) in their growth and metabolism process. Originally, OMVs were considered as a by-product of bacterial merisis. However, many scientists have reported the important role of OMVs in many fields recently. In this review, we briefly introduce OMVs biological functions and then summarize the findings about the OMVs interactions with host cells. At last, we will make an expectation about the prospects of the application of OMVs as vaccines.  相似文献   
109.
The effect of GA3 on somatic embryogenesis from petiole fragments excised from micropropagated fennel plantlets was studied. Explants were maintained for 4 weeks on an induction medium containing, 2,4-d and kinetin and were then transferred to a medium devoid of these growth regulators to allow embryo development. The addition of autoclaved or filter-sterilized GA3 to the induction medium or to the embryo development medium increased the number of embryogenic explants. No positive effect was observed when GA3 was added to the micropropagation medium of the mother plantlets. Gibberellic acid also counteracted the inhibiting effect of continuous light on the number of embryogenic explants. Moreover, the embryogenic frequency of petiole explants from several genotypes previously considered as poorly reacting was highly enhanced by GA3.Abbreviations BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 Gibberellic acid - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid  相似文献   
110.
The non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPDHN, NADP+-specific, EC 1.2.1.9) is present in green eukaryotes and some Streptococcus strains. The present report describes the results of activity and immunoblot analyses, which were used to generate the first survey of bacterial GAPDHN distribution in a number of Bacillus, Streptococcus and Clostridium strains. Putative gapN genes were identified after PCR amplification of partial 700-bp sequences using degenerate primers constructed from highly conserved protein regions. Alignment of the amino acid sequences of these fragments with those of known sequences from other eukaryotic and prokaryotic GAPDHNs, demonstrated the presence of conserved residues involved in catalytic activity that are not conserved in aldehyde dehydrogenases, a protein family closely linked to GAPDHNs. The results confirm that the basic structural features of the members of the GAPDHN family have been conserved throughout evolution and that no identity exists with phosphorylating GAPDHs. Furthermore, phylogenetic trees generated from multiple sequence alignments suggested a close relationship between plant and bacterial GAPDHN families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号