首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2015年   10篇
  2014年   3篇
  2013年   5篇
  2012年   11篇
  2011年   11篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
41.
Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.  相似文献   
42.
43.
IFN-producing killer dendritic cells (IKDC) were initially described as B220(+)CD11c(+)CD3(-)NK1.1(+) tumor-infiltrating cells that mediated part of the antitumor effects of the combination therapy with imatinib mesylate and IL-2. In this study, we show their functional dependency on IL-15 during homeostasis and inflammatory processes. Trans-presentation of IL-15 by IL-15Ralpha allows dramatic expansion of IKDC in vitro and in vivo, licenses IKDC for TRAIL-dependent killing and endows IKDC with immunizing potential, all three biological attributes not shared by B220(-)NK cells. However, IL-15 down-regulates the capacity of IKDC to induce MHC class I- or II-restricted T cell activation in vitro. Trans-presentation of IL-15 by IL-15Ralpha allows IKDC to respond to TLR3 and TLR4 ligands for the production of CCL2, a chemokine that is critical for IKDC trafficking into tumor beds (as described recently). We conclude that IKDC represent a unique subset of innate effectors functionally distinguishable from conventional NK cells in their ability to promptly respond to IL-15-driven inflammatory processes.  相似文献   
44.
The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, beta-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two beta rings such as beta-carotene, zeaxanthin and violaxanthin, while the other introduces both beta- and epsilon-rings in lycopene to form alpha-carotene and lutein. By reducing the expression of lycopene epsilon-cyclase (epsilon-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of beta-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of epsilon-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. epsilon-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.  相似文献   
45.
46.
Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rıo Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5–5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.  相似文献   
47.
48.
49.
Hydrocinnamic acid esters, lignin, flavonoids, glucosinolates, and salicylic acid protect plants against UV exposure, oxidative stress, diseases, and herbivores. Through the phenylpropanoid pathway, certain Brassicaceae family members, including Arabidopsis thaliana and Brassica napus, accumulate large amounts of the anti-nutritive sinapoylcholine (sinapine) in the seed. We successfully down-regulated activities of key enzymes in the pathway including F5H and SCT and achieved reduction of sinapine and lignin in B. napus seeds. Despite this success, it was unclear how multiple agronomic traits were affected in the transgenic plants. Here, we report altered large-scale gene expression of new alleles of f5h and sct mutants of A. thaliana and resultant accumulation of sinapoylglucose, disinapoylglucose, quercetin-3-O-rhamnoside, salicylic acid glucoside, and total indolyl glucosinolates in the two mutants. Expression of several flowering genes was altered in these mutants when grown under drought and NaCl treatments. Furthermore, both mutants were more susceptible to fungal infection than the wild type. Microarray experiments identified distinctive spatial and temporal expression patterns of gene clusters involved in silique/seed developmental processes and metabolite biosynthesis in these mutants. Taken together, these findings suggest that both f5h and sct mutants exhibit major differences in accumulation of diverse metabolites in the seed and profound changes in global large-scale gene expression, resulting in differential pleiotropic responses to environmental cues.  相似文献   
50.
Phylogenetic analysis of more than 4000 annotated bacterial acid phosphatases was carried out. Our analysis enabled us to sort these enzymes into the following three types: (1) class B acid phosphatases, which were distantly related to the other types, (2) class C acid phosphatases and (3) generic acid phosphatases (GAP). Although class B phosphatases are found in a limited number of bacterial families, which include known pathogens, class C acid phosphatases and GAP proteins are found in a variety of microbes that inhabit soil, fresh water and marine environments. As part of our analysis, we developed three profiles, named Pfr-B-Phos, Pfr-C-Phos and Pfr-GAP, to describe the three groups of acid phosphatases. These sequence-based profiles were then used to scan genomes and metagenomes to identify a large number of formerly unknown acid phosphatases. A number of proteins in databases annotated as hypothetical proteins were also identified by these profiles as putative acid phosphatases. To validate these in silico results, we cloned genes encoding candidate acid phosphatases from genomic DNA or recovered from metagenomic libraries or genes synthesized in vitro based on protein sequences recovered from metagenomic data. Expression of a number of these genes, followed by enzymatic analysis of the proteins, further confirmed that sequence similarity searches using our profiles could successfully identify previously unknown acid phosphatases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号