首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1719篇
  免费   132篇
  国内免费   7篇
  1858篇
  2023年   31篇
  2022年   41篇
  2021年   76篇
  2020年   52篇
  2019年   47篇
  2018年   74篇
  2017年   41篇
  2016年   62篇
  2015年   79篇
  2014年   105篇
  2013年   117篇
  2012年   133篇
  2011年   149篇
  2010年   81篇
  2009年   72篇
  2008年   79篇
  2007年   61篇
  2006年   47篇
  2005年   56篇
  2004年   58篇
  2003年   38篇
  2002年   52篇
  2001年   19篇
  2000年   17篇
  1999年   20篇
  1998年   15篇
  1997年   7篇
  1996年   8篇
  1995年   15篇
  1994年   9篇
  1992年   12篇
  1991年   6篇
  1989年   7篇
  1988年   7篇
  1987年   14篇
  1986年   12篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1981年   10篇
  1979年   9篇
  1978年   7篇
  1976年   5篇
  1975年   9篇
  1974年   6篇
  1973年   6篇
  1972年   6篇
  1971年   5篇
  1969年   5篇
  1968年   7篇
排序方式: 共有1858条查询结果,搜索用时 15 毫秒
101.
Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies.  相似文献   
102.
ABSTRACT

Cyclodehydrogenation of the ethylidene derivative of (5-methyl-1,2,4-triazino[5,6-b]indol-3-yl)hydrazine (1) gave the angular isomer, 1,10-dimethyl-1,2,4-triazolo[3′,4′:3,4][1,2,4]triazino[5,6-b]indole (4). The linear isomer, 3,10-dimethyl-1,2,4-triazolo[4′,3′:2,3][1,2,4]triazino[5,6-b]indole (7) could be prepared regioselectively by the cyclodehydration of the acetyl derivative of 1. The cyclodehydrogenation was extended to the monosaccharide derivatives of 1. The role of the N-methyl group on the site of annellation has been discussed.  相似文献   
103.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long‐term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV‐induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self‐renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   
104.
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.  相似文献   
105.
In the present study, Na+ manipulating genes could contribute not only to ion homeostasis but also to growth stimulation with exposing the halophyte Atriplex halimus L. to moderate NaCl concentration. The stimulation of growth was attributed to Na+ accumulation inside the vacuole leading to increase leaf cell size as well as accelerate leaf cell division. Increasing the assimilatory surface could result in enhancing the photosynthetic rate. The reduction of A. halimus growth compared to optimum growth at 50 and 200 mM NaCl could be attributed to osmotic effect rather than the ionic one of salt stress. The inhibition of photosynthesis seemed to be resulted from limitation of CO2 due to the osmotic effect on stomatal conductance rather than the activity loss of photosynthetic machinery. The depletion of starch content along with the increase in sucrose content could imply that photosynthesis may be a limiting for A. halimus growth. The fast coordinate induction of Na+ manipulating genes could reveal that the tolerance of A. halimus to high concentrations evolved from its ability to regulate and control Na+ influx and efflux. V-H +-PPase may play a vital role in A. halimus tolerance to osmotic and/or ionic stress due to its kinetics of induction. It seemed that H+-ATPase plays a pivotal role in A. halimus tolerance to stress due to the increase in its protein level was detected with all NaCl concentrations as well as with PEG treatments. Both of these genes might be useful in improving stress tolerance in transgenic crops.  相似文献   
106.
在伊朗, 麦扁盾蝽Eurygaster integriceps是小麦和大麦上的主要害虫。新烟碱类杀虫剂是一类具有较强活性的杀虫剂, 对刺吸式口器害虫具有良好的效果。本研究应用触杀和熏蒸两种生测方法测定了4种新烟碱类杀虫剂(噻虫嗪、吡虫啉、呋虫胺和啶虫咪)对麦扁盾蝽3龄若虫和成虫的毒效。触杀法生测结果显示, 各杀虫剂对麦扁盾蝽没有强烈的触杀活性, 但是在高浓度下(5 000 mg/L a. i.), 可见较高的死亡率。熏蒸法生测结果显示, 所有杀虫剂对麦扁盾蝽的若虫和成虫均有较好的毒性。结果提示应用熏蒸方法可能是治理这一重要害虫的新方法。  相似文献   
107.
108.

Genetic variations of microRNA encoding genes influence various sorts of diseases by modifying the expression or activity of microRNAs. MicroRNA 146a is an epigenetic regulator of immune response through controlling the type I interferon (IFN) and nuclear factor kappa B (NF-κB) pathways. Genetic variations of microRNA 146a impact the susceptibility to systemic lupus erythematosus (SLE) and its clinical presentations. This study aimed to investigate the polymorphisms of microRNA-146a gene (rs2431697 and rs57095329) in patients with SLE and its association with disease activity. Sixty-five patients with SLE and 40 apparently healthy controls were enrolled in this study. Patients were subjected to history taking, clinical examination, and disease activity evaluation by SLEDAI score. The microRNA-146a variants were determined by allele discrimination real-time PCR method in all participants. We found a statistically significant association between rs2431697 T allele and SLE (P-value?<?0.05), but there was no significant association between rs57095329 and SLE. The T/T genotype of microRNA-146a rs2431697 was associated with lupus nephritis, higher disease activity, and autoantibodies production. The microRNA-146a rs2431697 T allele could be a potential risk factor that contributes to SLE susceptibility, development of lupus nephritis, and disease activity.

  相似文献   
109.
Biological Trace Element Research - This report explains the employing of a combination test of traditional cell culture with a quantitative real-time PCR for assessment of the antiviral effect of...  相似文献   
110.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号