Sensitization to psychostimulant drugs, as well as morphine, subjected to cross-sensitization with stress. The development of morphine sensitization is associated with enhancements in dopamine overflow in the Nucleus accumbens (NAc). This study aimed to examine the role of accumbal D1/D2-like dopamine receptors in restraint stress (RS) induced sensitization to morphine antinociceptive effects. Adult male Wistar rats weighing 220–250 g underwent stereotaxic surgery. Two stainless steel guide cannulae were bilaterally implanted, 1 mm above the NAc injection site. Different solutions of SCH-23390, as a D1-like receptor antagonist or sulpiride, as a D2-like receptor antagonist, were microinjected into the NAc five min before exposure to RS. Restraint stress lasted for 3 h, 10 min after RS termination; animals received a subcutaneous injection of morphine (1 mg/kg) for 3 consecutive days. The procedure was followed by a 5-day drug and/or stress-free period. After that, on the 9th day, the nociceptive response was evaluated by the tail-flick test. The results revealed that intra-NAc administration of D1/D2-like dopamine receptor antagonists, SCH-23390 or sulpiride, respectively, blocked morphine sensitization-induced by RS and morphine co-administration in rats for three consecutive days. This work provides new insight into the determinant role of accumbal dopamine receptors in morphine sensitization produced by RS-morphine co-administration.
The effect of life cycle on the distributions of C(25) and C(30) highly branched isoprenoid (HBI) alkene lipids has been investigated for the marine diatom Rhizosolenia setigera. The concentrations of the C(30) compounds are largely independent of the cell volume, though the ratios of the individual isomers possessing five and six double bonds show a dependence on the position of the cell during its life cycle, especially during auxosporulation. In contrast to the C(30) pseudo-homologues, the C(25) isomers are not always detected in cultures of R. setigera. The biosynthesis of the C(25) HBIs would appear to result from the onset of auxosporulation, with further changes to their distributions taking place after this phase, including the formation of more unsaturated isomers. The results of this investigation may be used in part to explain the large variations in these lipids reported previously. 相似文献
The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.
Results
Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.
Conclusions
Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
The six most toxic Pakistani isolates of Bacillus thuringiensis (SBS Bt-23, 29, 34, 37, 45 and 47), which were previously characterized for their toxicity against larvae of mosquito, Anopheles stephensi, and the presence of cry4 gene, were used for cry11 (cry4D) gene amplification. A 1.9-kb DNA fragment of cry11 gene was PCR-amplified, cloned in expression vector pT7-7, and then used for transformation of E. coli BL21C. The optimum expression was obtained with 1 mM IPTG at 37°C for 3 h. This gene showed different percentage homologies
at protein level with scattered mutations in the toxic region. Biotoxicity assay of recombinant protein showed that Cry11
of SBS Bt 45 (DAB Bt 5) was the most toxic protein against third instar larvae of mosquito, A. stephensi, and has potentiality of a bioinsecticide against mosquitoes. 相似文献
A combination of proteomic and biochemical assays was used to examine variations in the venom of Conus vexillum taken from two locations (Hurgada and Sharm El-Shaikh) in the Red Sea, Egypt. Using MALDI/TOF-MS, a remarkable degree of intra-species variation between venom samples from both locations was identified. To evaluate variability in the cytotoxic effects of Conus venom, mice were injected with the same dose from each location. The oxidative stress biomarkers [malondialdehyde (MDA), protein carbonyl content (PCC)], antioxidants [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT)], total antioxidant capacity (TAC) and nitric oxide (NO), were measured 3, 6, 9 and 12 h post venom injection. The venoms induced a significant increase in the levels of PCC, MDA, NO, GSH and CAT. The venoms significantly inhibited the activity of SOD and reduced the TAC. Toxicological data showed that the venom obtained from Hurgada was more potent than that obtained from Sharm El-Shaikh. It can be concluded that: (1) the venom of the same Conus species from different regions is highly diversified (2) the venoms from different locations reflect clear differences in venom potency and (3) the cytotoxic effects of C. vexillum venom can be attributed to its ability to induce oxidative stress. 相似文献
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought. 相似文献
Complex networks are studied across many fields of science and are particularly important to understand biological processes. Motifs in networks are small connected sub-graphs that occur significantly in higher frequencies than in random networks. They have recently gathered much attention as a useful concept to uncover structural design principles of complex networks. Existing algorithms for finding network motifs are extremely costly in CPU time and memory consumption and have practically restrictions on the size of motifs. 相似文献