首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  17篇
  2022年   1篇
  2020年   1篇
  2016年   3篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
Efficient shoot regeneration and Agrobacterium-mediated genetic transformation systems were developed for Bacopa monnieri L. (Scrophulariaceae), a plant well known for its medicinal properties. Leaf explants were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP), and in combination with either indole-3-acetic acid (IAA) or napthalene-3-acetic acid. A combination of BAP (17.80 μM) and IAA (2.28 μM) maximized shoot initiation (85.2 ± 2.43) with greatest shoot length (2.8 ± 0.22), and was obtained directly from leaf explants without an intervening callus phase. Leaf segments from in vitro grown plants were co-cultivated with Agrobacterium tumefaciens LBA4404 harboring pCAMBIA1301 with ?-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes. The co-cultivated explants were transferred to selective shoot induction and elongation medium. The elongated hygromycin-resistant shoots were subsequently rooted on MS medium supplemented with 4.9 μM indole-3-butyric acid and 25 mg/l hygromycin (SSRM). Successful transformation was confirmed by monitoring histochemical GUS activity during shoot elongation and PCR analyses using uidA- and hpt-specific primers. Integration of hpt into the genome of transgenic plants was also verified by Southern blot analysis. The highest transformation efficiency achieved was 70.6%, with an average of 10.4 ± 0.15 transgenic plantlets per explant using the present transformation system. Therefore, these highly efficient and rapid regeneration and transformation systems create significant potential for engineering of B. monnieri with a view to detailed biomolecular analyses or for further enhancement of its medicinal properties.  相似文献   
12.
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.  相似文献   
13.
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR/t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.  相似文献   
14.
In Vitro Cellular & Developmental Biology - Plant - A highly efficient and reproducible in vitro plant regeneration method has been developed from shoot bud, half-shoot, and shoot slice...  相似文献   
15.
Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with β-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with 1 mg l−1 indole-3-butyric acid and 15 mg l−1 hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for β-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of 3.9 ± 0.39 transgenic plantlets per explant was achieved in the present transformation system. It took only 2–3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.  相似文献   
16.
The overexpression of multidrug resistance protein 1 (MRP1) by tumor cells results in multidrug resistance (MDR) to structurally unrelated anticancer drugs. Circumvention of MDR by combination of chemosensitizers with antitumor compounds is a new field of investigation in cancer chemotherapy. Much effort has been put-in recently to identify the modulators/inhibitors of MRP1 to overcome the MDR. 1,4-Dihydropyridine (DHP) derivatives are indicated to be a new class of MRP1 inhibitors in cancer treatment. Molecular docking studies were carried out on 48 newly synthesized DHP derivatives with the crystal structure of MRP1 to gain some structural insights on the binding mode and possible interactions with the active site of MRP1 (NBD1). The 10 top-ranked molecules were selectively evaluated, experimentally for their MRP1 inhibitory effect using the insect cell membrane MRP1 ATPase assay. The inhibitory capacity (IC(50) concentrations) of the test compounds was compared with the reported IC(50)- or the K(i)-concentrations for benzbromarone, a standard MRP1 inhibitor. Amongst the compounds tested, compounds IA(1) and IIA(5) were found to exhibit a potent MRP1 inhibitory action with IC(50) values of 20±4 and 14±2 μM (mean±SD), respectively as compared to benzbromarone (IC(50)=4 μM). The compound IIA(5), in particular was found to be more potent than IA(1) in accordance with the docking results. These new DHP derivatives possess promising characteristics for their development as MDR reversal agents.  相似文献   
17.
The objective of the present study was to develop a protocol for in vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation using immature cotyledon explants of Indian Kino tree (Pterocarpus marsupium Roxb.). Immature cotyledon explants excised from 9-day-old axenic seedlings produced optimal callus on Murashige and Skoog (MS) medium supplemented with 1.07 μM α-naphthalene acetic acid (NAA), after 2 weeks of culture. When the above said callus was incubated on MS + 8.90 μM 6-benzylaminopurine (BAP) + 1.07 μM NAA, a regeneration frequency of 60.41 % with shoot number and length 12.2 ± 0.85 and 1.4 ± 0.13, respectively, was observed. For further shoot multiplication and elongation, these cultures were transferred onto MS + 4.40 μM BAP. Elongated shoots dipped in 19.60 μM indole-3-butyric acid (IBA) for 24 h and then cultured on ½MS + 2.85 μM IBA, 75 % shoots developed roots and 95 % of plantlets survived in field condition. Organogenic callus was co-cultivated with the A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301with ß-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes and grown on MS + 8.90 μM BAP + 1.07 μM NAA (RM) + 200 μM acetosyringone for 2 days and then transferred to MS + 8.90 μM BAP + 1.07 μM NAA + 20 mg/l hygromycin + 250 mg/l cefotaxime (SIM) and 4.40 μM BAP + 15 mg/l hygromycin + 200 mg/l cefotaxime (SEM). The putatively transformed shoots were subsequently rooted on ½MS + 2.85 μM IBA + 20 mg/l hygromycin (SRM), after pulse treatment for 24 h with 19.60 μM IBA. Successful gene transfer into putatively transformed plantlets was confirmed by histochemical GUS assay, PCR and RT-PCR analysis. Southern blot analysis of regenerated plantlets confirmed the integration of hpt gene in transgenic plantlets. In the present study, a rate of 20.92 % transformation frequency was achieved and the genetic transformation protocol presented here may pave way for genetic manipulation of this multipurpose legume tree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号