首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   20篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   9篇
  2012年   15篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
81.
Adaptation is normally viewed as the enemy of the antibiotic discovery and development process because adaptation among pathogens to antibiotic exposure leads to resistance. We present a method here that, in contrast, exploits the power of adaptation among antibiotic producers to accelerate the discovery of antibiotics. A competition-based adaptive laboratory evolution scheme is presented whereby an antibiotic-producing microorganism is competed against a target pathogen and serially passed over time until the producer evolves the ability to synthesize a chemical entity that inhibits growth of the pathogen. When multiple Streptomyces clavuligerus replicates were adaptively evolved against methicillin-resistant Staphylococcus aureus N315 in this manner, a strain emerged that acquired the ability to constitutively produce holomycin. In contrast, no holomycin could be detected from the unevolved wild-type strain. Moreover, genome re-sequencing revealed that the evolved strain had lost pSCL4, a large 1.8 Mbp plasmid, and acquired several single nucleotide polymorphisms in genes that have been shown to affect secondary metabolite biosynthesis. These results demonstrate that competition-based adaptive laboratory evolution can constitute a platform to create mutants that overproduce known antibiotics and possibly to discover new compounds as well.  相似文献   
82.
83.
Using cultured proximal renal tubular epithelial cells (LLC-PK1), the present study investigates the effect of atrial natriuretic peptide (ANP) on cytotoxicity induced by cyclosporin A (CsA). Preincubation with ANP (1-100 nM) protected LLC-PK1 cells from CsA-induced toxicity in a concentration-dependent manner. A cytoprotective effect comparable to ANP was observed when preincubating the cells with 8-bromo cGMP (1-100 microM) or the antioxidant heme oxygenase (HO) metabolite bilirubin (0.1-10 microM). ANP or cGMP produced increases in HO-1 protein levels at concentrations that were also effective in cellular protection. Moreover, incubation with ANP or 8-bromo cGMP led to increased HO activity, i.e., formation of bilirubin in the cell lysate (up to 3-fold over basal). Tin protoporphyrin-IX (SnPP; 19 microM), an inhibitor of HO activity, completely abolished ANP-induced cytoprotection. Our results demonstrate that HO-1 is a cellular target of ANP and cGMP in renal cells. HO-1 induction and ensuing formation of antioxidant metabolites may be a novel pathway by which ANP protects from CsA-dependent nephrotoxicity and preserves renal function.  相似文献   
84.
The seasonality of primary productivity by phytoplankton in relation to physico-chemical and biological variables was studied in Lake Hora-Kilole from August 2007 to May 2008. In 1989, the Mojo River was temporarily diverted to flow into the lake, which substantially changed its physico-chemical conditions and the composition of the phytoplankton. Primary productivity was controlled primarily by soluble reactive phosphorus (SRP), ammonia (NH3), temperature and euphotic depth (Zeu). The light-saturated rate of photosynthesis (Amax) varied from 370 to 3 843?mg O2 m?3 h?1 with the maximum value corresponding to the seasonal maximum of phytoplankton biomass. Compared to the period before the diversion of the river, Amax was reduced by more than ninety-fold in early 1990s and by less than five-fold in 2007 and 2008. Similarly, average phytoplankton chlorophyll a was reduced by more than 2.5 × in the early 1990s and to less than 50% in 2007 and 2008. This highlights the importance of the diversion river water on the physico-chemical and biological environment of the lake.  相似文献   
85.
Near-term fetuses of different mammalian species, including humans, exhibit functional sensory and learning capabilities. The neurobiological literature indicates that the unborn organism processes sensory stimuli present in the amniotic fluid, retains this information for considerable amounts of time, and is also capable of associating such stimuli with biologically relevant events. This research has stimulated studies aimed at the analysis of fetal and neonatal learning about ethanol, a topic that constitutes the core of the present review. Ethanol has characteristic sensory (olfactory, taste, and trigeminal) attributes and can exert pharmacologic reinforcing effects. The studies under examination support the hypothesis that low to moderate levels of maternal ethanol intoxication during late pregnancy set the opportunity for fetal learning about ethanol. These levels of prenatal ethanol exposure do not generate evident morphologic or neurobehavioral alterations in the offspring, but they exert a significant impact upon later ethanol-seeking and intake behaviors. Supported by preclinical and clinical findings, this review contributes to strengthening the case for the ability of prenatal ethanol exposure to have effects on the postnatal organism.  相似文献   
86.
In the present report we describe Trypanosoma cruzi ubiquitin as an antigen to be utilized in the differential diagnosis of Chagas disease and leishmaniasis. Initially, recombinant T. cruzi ubiquitin was evaluated against a panel of sera by phage dot immunoassay, showing a good performance against chagasic sera. However, the presence of a carboxy-terminal tail region encoding a ribosomal protein homologous to a related protein present in the genome of Leishmania sp. gave significant cross-reactivity with leishmanial sera. Therefore, ubiquitin was purified by a simple biochemical protocol and its immunoreactivity was studied by enzyme-linked immunosorbent assay. Analysis of 104 sera indicates that the response to ubiquitin is very sensitive towards chronic chagasic sera (98%) and, more important, highly species-specific, presenting better performance compared to the use of the recombinant protein or the total epimastigote extracts when tested against a panel of leishmanial sera, where out of a total of 70 sera tested, only five sera from the mucocutaneous form of the disease reacted with T. cruzi ubiquitin. On the other hand, Leishmania ubiquitin was not recognized by chagasic sera, but was recognized by sera from different forms of leishmaniasis. These results make ubiquitin an excellent candidate to be used in the differential diagnosis of these two parasitic diseases. The molecular basis for this highly species-specific response is discussed.  相似文献   
87.
Pentaerithrityl tetranitrate (PETN) is a long-acting donor of nitric oxide (NO) and has recently been characterized as an antianginal agent that, in contrast with other nitric acid esters, does not induce oxidative stress and is therefore free of tolerance. Moreover, animal experiments have revealed that PETN actively reduces oxygen radical formation in vivoand specifically prevents atherogenesis and endothelial dysfunction. Because heme oxygenase-1 (HO-1) has been described as an antiatherogenic and cytoprotective gene in the endothelium, our aim was to investigate the effect of the active PETN metabolite pentaerithrityl trinitrate (PETriN) on HO-1 expression and catalytic activity in endothelial cells. Endothelial cells derived from human umbilical vein were incubated with PETriN (0.01-1 mM) for 8 hr. PETriN increased HO-1 mRNA and protein levels in a concentration-dependent fashion up to 3-fold over basal levels. Elevation of HO-1 protein was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of both carbon monoxide and the endogenous antioxidant, bilirubin. Pretreatment of endothelial cells with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that the active PETN metabolite, PETriN, stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein, HO-1, in endothelial cells. Increased HO-1 expression and ensuing formation of bilirubin and carbon monoxide may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN.  相似文献   
88.

Swine coronaviruses affecting pigs have been studied sporadically in wildlife. In Argentina, epidemiological surveillance of TGEV/PRCV is conducted only in domestic pigs. The aim was to assess the prevalence of TGEV/PRCV in wild Suina. Antibodies against these diseases in wild boar and captive collared peccary were surveyed by ELISA. Antibodies against TGEV were found in three collared peccaries (n?=?87). No TGEV/PRCV antibodies were detected in wild boar (n?=?160). Preventive measures should be conducted in contact nodes where the transmission of agents may increase. Epidemiological surveillance in wildlife populations and in captive animals before their reintroduction should be attempted.

  相似文献   
89.
Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C‐9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro‐OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time‐resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro‐OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS‐integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro‐OMeTAD. Importantly, the low‐cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.  相似文献   
90.
We have cloned and sequenced COX12, the nuclear gene for subunit VIb of Saccharomyces cerevisiae cytochrome c oxidase. This subunit, which was previously not found in cytochrome c oxidase purified from S. cerevisiae, has a deduced amino acid sequence which is 41% identical to the sequences of subunits VIb of bovine and human cytochrome c oxidases. The chromosomal copy of COX12 was replaced with a plasmid-derived copy of COX12, in which the coding region for the suspected cytochrome oxidase subunit was replaced with the yeast URA3 gene. The resulting Ura+ deletion strain grew poorly at room temperature and was unable to grow at 37 degrees C on ethanol/glycerol medium, whereas growth was normal at both temperatures on dextrose. This temperature-dependent, petite phenotype of the deletion strain was complemented to wild-type growth with a single copy plasmid carrying COX12. Cytochrome c oxidase activity in mitochondrial membranes from the cox12 deletion strain is decreased to 5-15% of that in membranes from the wild-type parent, and this activity is restored to normal when the cox12 deletion strain is complemented by the plasmid-borne COX12. Optical spectra of mitochondrial membranes from the cox12 deletion strain revealed that optically detectable cytochrome c oxidase is assembled at room temperature and at 37 degrees C, although the heme a + a3 absorption is diminished approximately 50%. The N-terminal amino acid sequence of the protein encoded by COX12 is identical to the N-terminal sequence of a subunit found in yeast cytochrome c oxidase purified by a new procedure (Taanman, J.-W., and Capaldi, R. A. (1992) J. Biol. Chem. 267, 22481-22485). We conclude that COX12 encodes a subunit of yeast cytochrome c oxidase which is essential during assembly for full cytochrome c oxidase activity but apparently can be removed after the oxidase is assembled, with retention of oxidase activity. This is the first instance in which deletion of a subunit of cytochrome c oxidase results in assembly of optically detectable cytochrome c oxidase but having markedly diminished activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号