首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1276篇
  免费   94篇
  2023年   10篇
  2022年   8篇
  2021年   36篇
  2020年   24篇
  2019年   28篇
  2018年   34篇
  2017年   31篇
  2016年   46篇
  2015年   50篇
  2014年   80篇
  2013年   95篇
  2012年   106篇
  2011年   87篇
  2010年   56篇
  2009年   72篇
  2008年   68篇
  2007年   76篇
  2006年   48篇
  2005年   58篇
  2004年   64篇
  2003年   48篇
  2002年   42篇
  2001年   15篇
  2000年   19篇
  1999年   16篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   8篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1981年   4篇
  1980年   4篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
  1962年   1篇
  1961年   1篇
  1958年   1篇
  1942年   1篇
排序方式: 共有1370条查询结果,搜索用时 31 毫秒
991.
Two new terpenoids, 20(S),24(R)-epoxy-dammar-12,25-diol-3-one and 12-methoxy-11,7-dihydroxydehydroabietane, were isolated from the roots of Salvia bicolor.  相似文献   
992.
Replicative DNA polymerases, such as T4 polymerase, possess both elongation and 3'-5' exonuclease proofreading catalytic activities. They arrest at the base preceding DNA damage on the coding DNA strand and specialized DNA polymerases have evolved to replicate across the lesion by a process known as TLS (translesion DNA synthesis). TLS is considered to take place in two steps that often require different enzymes, insertion of a nucleotide opposite the damaged template base followed by extension from the inserted nucleotide. We and others have observed that inactivation of the 3'-5' exonuclease function of T4 polymerase enables TLS across a single site-specific abasic [AP (apurinic/apyrimidinic)] lesion. In the present study we report a role for auxiliary replicative factors in this reaction. When replication is performed with a large excess of DNA template over DNA polymerase in the absence of auxiliary factors, the exo- polymerase (T4 DNA polymerase deficient in the 3'-5' exonuclease activity) inserts one nucleotide opposite the AP site but does not extend past the lesion. Addition of the clamp processivity factor and the clamp loader complex restores primer extension across an AP lesion on a circular AP-containing DNA substrate by the exo- polymerase, but has no effect on the wild-type enzyme. Hence T4 DNA polymerase exhibits a variety of responses to DNA damage. It can behave as a replicative polymerase or (in the absence of proofreading activity) as a specialized DNA polymerase and carry out TLS. As a specialized polymerase it can function either as an inserter or (with the help of accessory proteins) as an extender. The capacity to separate these distinct functions in a single DNA polymerase provides insight into the biochemical requirements for translesion DNA synthesis.  相似文献   
993.
The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis, was the protein most toxic to L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 microg/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA were not active at the assayed concentration (100 microg/ml). In vitro binding and competition experiments showed that none of the toxins tested (Cry1Ia, Cry2Aa, Cry2Ab, and Cry9C) shared binding sites with Cry1Ab. We conclude that either Cry1Ia or Cry9C could be used in combination with Cry1Ab to control this pest, either as the active components of B. thuringiensis sprays or expressed together in transgenic plants.  相似文献   
994.
Transforming growth factor beta-1 (TGFB1) may influence asthma by modulating allergic airway inflammation and airway remodeling. The role of single nucleotide polymorphisms (SNPs) of TGFB1 in asthma remains inconclusive. We examined TGFB1 SNPs in relation to asthma risk and degree of atopy among 546 case-parent triads, consisting of asthmatics aged 4–17 years and their parents in Mexico City. Atopy to 24 aeroallergens was determined by skin prick tests. We genotyped five TGFB1 SNPs, including two known functional SNPs [C-509T (rs1800469), T869C (rs1982073)] and three others (rs7258445, rs1800472, rs8179181), using TaqMan and Masscode assays. We analyzed the data using log-linear and polytomous logistic methods. Three associated SNPs, including the two known functional SNPs, were statistically significantly related to asthma risk. Individuals carrying the T allele of C-509T had an increased risk of asthma [relative risk (RR) = 1.42, 95% confidence interval (CI) = 1.08–1.87 for one copy; RR (95%CI) = 1.95 (1.36–2.78) for two copies]. For T869C, the RRs (95%CI) were 1.47 (1.09–1.98) for one and 2.00 (1.38–2.90) for two copies of the C allele. Similar results were found for rs7258445. The haplotype containing all three risk alleles conferred an increased risk of asthma (RR = 1.48, 95% CI = 1.11–1.95 for one copy; RR = 1.77, 95% CI = 1.22–2.57 for two copies). These three SNPs were also related to the degree of atopy. This largest study to date of genetic variation in TGFB1 and asthma and atopy adds to increasing evidence for a role in these disorders.  相似文献   
995.
Optical mapping of arrhythmias and defibrillation provides important insights; however, a limitation of the technique is signal distortion due to photon scattering. The goal of this experimental/simulation study is to investigate the role of three-dimensional photon scattering in optical signal distortion during ventricular tachycardia (VT) and defibrillation. A three-dimensional realistic bidomain rabbit ventricular model was combined with a model of photon transport. Shocks were applied via external electrodes to induce sustained VT, and transmembrane potentials (V(m)) were compared with synthesized optical signals (V(opt)). Fluorescent recordings were conducted in isolated rabbit hearts to validate simulation results. Results demonstrate that shock-induced membrane polarization magnitude is smaller in V(opt) and in experimental signals as compared to V(m). This is due to transduction of potentials from weakly polarized midmyocardium to the epicardium. During shock-induced reentry and in sustained VT, photon scattering, combined with complex wavefront dynamics, results in optical action potentials near a filament exhibiting i), elevated resting potential, ii), reduced amplitude relative to pacing, and iii), dual-humped morphologies. A shift of up to 4 mm in the phase singularity location was observed in V(opt) maps when compared to V(m). This combined experimental/simulation study provides an interpretation of optical recordings during VT and defibrillation.  相似文献   
996.
997.
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.  相似文献   
998.
Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation–positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified.  相似文献   
999.
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time-course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off-flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in ‘fast motion’ in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.  相似文献   
1000.
With five decades of sustained application, micropipette aspiration has enabled a wide range of biomechanical studies in the field of cell mechanics. Here, we provide an update on the use of the technique, with a focus on recent developments in the analysis of the experiments, innovative microaspiration-based approaches, and applications in a broad variety of cell types. We first recapitulate experimental variations of the technique. We then discuss analysis models focusing on important limitations of widely used biomechanical models, which underpin the urge to adopt the appropriate ones to avoid misleading conclusions. The possibilities of performing different studies on the same cell are also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号