首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
  2022年   1篇
  2021年   5篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
61.
Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in greater DXR concentrations. We observed partial follicle survival of 35% ± 3% (n = 80) in 0.01nM treatment and 48% ± 2% (n = 92) in 0.005nM, which we identified as the IC50 for secondary follicles. In summary, we established a 3D in vitro ovarian follicle culture system that could be used in an HTP approach to measure toxic effects on ovarian follicles.  相似文献   
62.
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.  相似文献   
63.

Background

Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses.

Results

Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics.

Conclusion

This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV.  相似文献   
64.
65.

Background

Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia.

Results

It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively.

Conclusion

We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.  相似文献   
66.
67.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In Gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these ‘self-sufficient’ pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   
68.
69.
Yersinia pestis is a Gram-negative bacterium that causes plague. Currently, plague is considered a re-emerging infectious disease and Y. pestis a potential bioterrorism agent. Autotransporters (ATs) are virulence proteins translocated by a variety of pathogenic Gram-negative bacteria across the cell envelope to the cell surface or extracellular environment. In this study, we screened the genome of Yersinia pestis KIM for AT genes whose expression might be relevant for the pathogenicity of this plague-causing organism. By in silico analyses, we identified ten putative AT genes in the genomic sequence of Y. pestis KIM; two of these genes are located within known pathogenicity islands. The expression of all ten putative AT genes in Y. pestis KIM was confirmed by RT-PCR. Five genes, designated yapA, yapC, yapG, yapK and yapN, were subsequently cloned and expressed in Escherichia coli K12 for protein secretion studies. Two forms of the YapA protein (130 kDa and 115 kDa) were found secreted into the culture medium. Protease cleavage at the C terminus of YapA released the protein from the cell surface. Outer membrane localization of YapC (65 kDa), YapG (100 kDa), YapK (130 kDa), and YapN (60 kDa) was established by cell fractionation, and cell surface localization of YapC and YapN was demonstrated by protease accessibility experiments. In functional studies, YapN and YapK showed hemagglutination activity and YapC exhibited autoagglutination activity. Data reported here represent the first study on Y. pestis ATs.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号