首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  89篇
  2022年   2篇
  2021年   5篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
11.
12.
13.
Neurodegeneration in diseases caused by altered metabolism of mammalian prion protein (PrP) can be averted by reducing PrP expression. To identify novel pathways for PrP down-regulation, we analyzed cells that had adapted to the negative selection pressure of stable overexpression of a disease-causing PrP mutant. A mutant cell line was isolated that selectively and quantitatively routes wild-type and various mutant PrPs for ER retrotranslocation and proteasomal degradation. Biochemical analyses of the mutant cells revealed that a defect in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an unprocessed GPI-anchoring signal sequence that directs both ER retention and efficient retrotranslocation of PrP. An unprocessed GPI signal was sufficient to impart ER retention, but not retrotranslocation, to a heterologous protein, revealing an unexpected role for the mature domain in the metabolism of misprocessed GPI-anchored proteins. Our results provide new insights into the quality control pathways for unprocessed GPI-anchored proteins and identify transamidation of the GPI signal sequence as a step in PrP biosynthesis that is absolutely required for its surface expression. As each GPI signal sequence is unique, these results also identify signal recognition by the GPI-transamidase as a potential step for selective small molecule perturbation of PrP expression.  相似文献   
14.
The hepatoprotective and antioxidant effect of Cassia fistula Linn. leaf extract on liver injury induced by diethylnitrosamine (DEN) was investigated. Wistar rats weighing 200+/-10g were administered a single dose of DEN (200mg/kg b.w., i.p.) and left for 30 days. For hepatoprotective studies, ethanolic leaf extract (ELE) of C. fistula Linn. (500mg/kg b.w., p.o.) was administered daily for 30 days. AST, ALT, ALP, LDH, gamma-GT and bilirubin were estimated in serum and liver tissue. Lipid peroxidation (LPO), SOD and CAT were also estimated in liver tissue as markers of oxidative stress. DEN induced hepatotoxicity in all the treated animals were evident by elevated serum ALT, AST, ALP and bilirubin levels and a simultaneous fall in their levels in the liver tissue after 30 days. Induction of oxidative stress in the liver was evidenced by increased LPO and fall in the activities of SOD and CAT. ELE administration for 30 days prevented the DEN induced hepatic injury and oxidative stress. In conclusion, it was observed that ELE of C. fistula Linn. protects the liver against DEN induced hepatic injury in rats.  相似文献   
15.
16.
Epithelial cell behavior is coordinated by the composition of the surrounding extracellular matrix (ECM); thus ECM protein identification is critical for understanding normal biology and disease states. Proteomic analyses of ECM proteins have been hindered by the insoluble and digestion-resistant nature of ECM. Here we explore the utility of combining rapid ultrasonication- and surfactant-assisted digestion for the detailed proteomics analysis of ECM samples. When compared with traditional overnight digestion, this optimized method dramatically improved the sequence coverage for collagen I, revealed the presence of hundreds of previously unidentified proteins in Matrigel, and identified a protein profile for ECM isolated from rat mammary glands that was substantially different from that found in Matrigel. In a three-dimensional culture assay to investigate epithelial cell-ECM interactions, mammary epithelial cells were found to undergo extensive branching morphogenesis when plated with mammary gland-derived matrix in comparison with Matrigel. Cumulatively these data highlight the tissue-specific nature of ECM composition and function and underscore the need for optimized techniques, such as those described here, for the proteomics characterization of ECM samples.Extracellular matrix (ECM)1 is a critical component of the tissue microenvironment. ECM plays a pivotal role in embryonic stem cell development and differentiation (1, 2) as well as many physiological (3) and pathological processes, including cancer progression (4, 5). Cell regulation by ECM has been studied with high frequency in recent years (7, 8). However, our ability to globally characterize ECM composition both in vitro and in vivo has been severely limited because of several unique attributes of ECM proteins such as high molecular weight glycans and the presence of covalent protein cross-links (6, 9, 10). Traditional proteomics approaches have proven to be ineffective for the identification of ECM proteins as demonstrated by the fact that collagens, despite being the most abundant protein in mammals, are significantly underrepresented in tissue-based proteomics data sets.Ultrasonication has long been used for the digestion of bioorganic materials to allow for maximal and reproducible extraction and hence the accurate identification of small molecule and inorganic analytes (11). More recently, Capelo et al. (12) have used ultrasonic energy to catalyze tryptic digestion of proteins for subsequent mass spectrometry-based identification. Here we sought to determine whether this method could be optimized to prepare ECM samples for mass spectrometry-based analysis. For method development, we used rat tail collagen as a representative ECM protein for which current proteomics approaches have proven relatively unsuccessful. Type I collagen is defined as a right-handed triple helix heterotrimer comprising two identical α1 chains and one α2 chain that form a fibrillar network (6). The physical properties of the triple helical structure render the protein resistant to proteasch as trypsin (9). In this work, we focused our efforts on developing a digestion approach that improves our ability to perform proteomics analysis on a type I collagen preparation and then used this method to identify the protein composition of EHS murine chondrosarcoma matrix (10), herein referred to as Matrigel, and a matrix preparation from rat mammary tissue.In this study, we developed a digestion approach suitable for a two-dimensional liquid chromatography-tandem mass spectrometry-based analysis of ECM proteins. Our digestion approach involves three cycles of ultrasonication for rapid initial trypsin digestion followed by overnight digestion using an acid-labile surfactant. This approach resulted in significant improvement in collagen peptide identification and the identification of numerous ECM proteins previously uncharacterized in Matrigel and in mammary tissue. The application of our ECM-optimized ultrasonic assisted trypsin digestion method is anticipated to significantly advance the identification of tissue- and disease state-specific ECM proteins.  相似文献   
17.
Influenza viruses of the H2N2 subtype have not circulated among humans in over 40 years. The occasional isolation of avian H2 strains from swine and avian species coupled with waning population immunity to H2 hemagglutinin (HA) warrants investigation of this subtype due to its pandemic potential. In this study we examined the transmissibility of representative human H2N2 viruses, A/Albany/6/58 (Alb/58) and A/El Salvador/2/57 (ElSalv/57), isolated during the 1957/58 pandemic, in the ferret model. The receptor binding properties of these H2N2 viruses was analyzed using dose-dependent direct glycan array-binding assays. Alb/58 virus, which contains the 226L/228S amino acid combination in the HA and displayed dual binding to both alpha 2,6 and alpha 2,3 glycan receptors, transmitted efficiently to naïve ferrets by respiratory droplets. Inefficient transmission was observed with ElSalv/57 virus, which contains the 226Q/228G amino acid combination and preferentially binds alpha 2,3 over alpha 2,6 glycan receptors. However, a unique transmission event with the ElSalv/57 virus occurred which produced a 226L/228G H2N2 natural variant virus that displayed an increase in binding specificity to alpha 2,6 glycan receptors and enhanced respiratory droplet transmissibility. Our studies provide a correlation between binding affinity to glycan receptors with terminal alpha 2,6-linked sialic acid and the efficiency of respiratory droplet transmission for pandemic H2N2 influenza viruses.  相似文献   
18.
19.
20.
In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 × 1012 virus particles (vp)/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2) and 79% (CYP2C11) of control by 14 days (p ≤ 0.01). Helper-dependent adenovirus, with all viral genes removed, suppressed CYP3A2 (43%) and CYP2C11 (55%) within six hours. CYP3A2 remained significantly suppressed (47%, 14 days, p ≤ 0.01) while CYP2C11 returned to baseline at this time. CYP3A2 and 2C11 were reduced by 45 and 42% respectively 6 hours after treatment with PEGylated adenovirus, which has a low immunological profile (p ≤ 0.05). CYP3A2 remained suppressed (34%, p ≤ 0.05) for 14 days while CYP2C11 recovered. Inactivated virus suppressed CYP3A2 activity by 25–50% for 14 days (p ≤ 0.05). CYP2C11 was affected similar manner but recovered by day 14. Microarray and in vitro studies suggest that changes in cellular signaling pathways initiated early in virus infection contribute to changes in CYP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号