全文获取类型
收费全文 | 5177篇 |
免费 | 485篇 |
专业分类
5662篇 |
出版年
2024年 | 7篇 |
2023年 | 35篇 |
2022年 | 83篇 |
2021年 | 173篇 |
2020年 | 102篇 |
2019年 | 116篇 |
2018年 | 117篇 |
2017年 | 112篇 |
2016年 | 183篇 |
2015年 | 314篇 |
2014年 | 321篇 |
2013年 | 347篇 |
2012年 | 463篇 |
2011年 | 474篇 |
2010年 | 277篇 |
2009年 | 250篇 |
2008年 | 329篇 |
2007年 | 312篇 |
2006年 | 278篇 |
2005年 | 254篇 |
2004年 | 233篇 |
2003年 | 217篇 |
2002年 | 179篇 |
2001年 | 32篇 |
2000年 | 33篇 |
1999年 | 26篇 |
1998年 | 37篇 |
1997年 | 20篇 |
1996年 | 13篇 |
1995年 | 16篇 |
1994年 | 14篇 |
1993年 | 14篇 |
1992年 | 17篇 |
1991年 | 14篇 |
1990年 | 10篇 |
1989年 | 20篇 |
1988年 | 13篇 |
1987年 | 16篇 |
1986年 | 10篇 |
1985年 | 9篇 |
1984年 | 11篇 |
1982年 | 13篇 |
1981年 | 17篇 |
1980年 | 9篇 |
1978年 | 10篇 |
1977年 | 6篇 |
1975年 | 6篇 |
1974年 | 6篇 |
1973年 | 12篇 |
1968年 | 7篇 |
排序方式: 共有5662条查询结果,搜索用时 17 毫秒
31.
Piotr Popik Martyna Krawczyk Krystyna Golembiowska Gabriel Nowak Aaron Janowsky Phil Skolnick Arnold Lippa Anthony S. Basile 《Cellular and molecular neurobiology》2006,26(4-6):855-871
Summary 1. The molecular and behavioral pharmacology of DOV 102,677 is characterized.2. This characterization was performed using radioligand binding and neurotransmitter uptake assays targeting the monoamine neurotransmitter receptors. In addition, the effects of DOV 102,677 on extracellular neurotransmitter levels were investigated using in vivo microdialysis. Finally, the effects of DOV 102,677 in the forced swim test, locomotor function, and response to prepulse inhibition was investigated.3. DOV 102,677 is a novel, “triple” uptake inhibitor that suppresses [3H]dopamine (DA), [3H]norepinephrine (NE) and [3H]serotonin (5-HT) uptake by recombinant human transporters with IC50 values of 129, 103 and 133 nM, respectively. Radioligand binding to the dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters is inhibited with k
i values of 222, 1030, and 740 nM, respectively. DOV 102,677 (20 mg/kg IP) increased extracellular levels of DA and 5-HT in the prefrontal cortex to 320 and 280% above baseline 100 min after administration. DA levels were stably increased for the duration (240 min) of the study, but serotonin levels declined to baseline by 200 min after administration. NE levels increased linearly to a maximum of 348% at 240 min post-dosing. Consistent with these increases in NE levels, the density of β-adrenoceptors was selectively decreased in the cortex of rats treated with DOV 102,677 (20 mg/kg per day, PO, 35 days).4. DOV 102,677 dose-dependently reduced the amount of time spent immobile by rats in the forced swim test, a model predictive of antidepressant activity, with a minimum effective dose (MED) of 20 mg/kg and a maximal efficacy comparable to imipramine. This decrease in immobility time did not appear to result from increased motor activity. Further, DOV 102,677 was as effective as methylphenidate in reducing the amplitude of the startle response in juvenile mice, without notably altering motor activity.5. In summary, DOV 102,677 is an orally active, “balanced” inhibitor of DAT, NET and SERT with therapeutic versatility in treating neuropsychiatric disorders beyond depression. 相似文献
32.
Shinya Nishi Koji Nakabayashi Brian Kobilka Aaron J W Hsueh 《The Journal of biological chemistry》2002,277(6):3958-3964
Lutropin (LH) and follitropin (FSH) receptors belong to a group of leucine-rich repeat-containing, G protein-coupled receptors (LGRs) found in vertebrates and flies. We fused the ectodomain of human LH or FSH receptors to the transmembrane region of fly LGR2. The chimeric human/fly receptors, unlike their wild type counterparts, exhibited ligand-independent constitutive activity. Because ectodomains likely interact with exoloops to constrain the receptors, individual exoloops of the chimeric receptor containing the ectodomain of the LH receptor and transmembrane region of fly LGR2 was replaced with LH receptor sequences. Chimeric receptors with the ectodomain and exoloop 2, but not exoloop 1 or 3, from LH receptors showed decreases in constitutive activity, but ligand treatment stimulated cAMP production. Furthermore, substitution of key resides in the hinge region of fly LGR2 with LH receptor sequences led to constitutive receptor activation; however, concomitant substitution of the homologous exoloop 2 of the LH receptor decreased G(s) coupling. These results suggest that the hinge region of the LH receptor interacts with exoloop 2 to constrain the receptor in an inactive conformation whereas ligand binding relieves this constraint, leading to G(s) activation. 相似文献
33.
Jung Joo Hong Matthew R. Reynolds Teresa L. Mattila Aaron Hage David I. Watkins Christopher J. Miller Pamela J. Skinner 《PloS one》2009,4(1)
CD8 T cells play an important role in controlling viral infections. We investigated the in situ localization of simian immunodeficiency virus (SIV)-specific T cells in lymph and genital tissues from SIV-infected macaques using MHC-class I tetramers. The majority of tetramer-binding cells localized in T cell zones and were CD8+. Curiously, small subpopulations of tetramer-binding cells that had little to no surface CD8 were detected in situ both early and late post-infection, and in both vaginally and rectally inoculated macaques. These tetramer+CD8low/− cells were more often localized in apparent B cell follicles relative to T cell zones and more often found near or within the genital epithelium than the submucosa. Cells analyzed by flow cytometry showed similar populations of cells. Further immunohistological characterization revealed small populations of tetramer+CD20− cells inside B cell follicles and that tetramer+ cells did not stain with γδ-TCR nor CD4 antibodies. Negative control tetramer staining indicated that tetramer+CD8low/− cells were not likely NK cells non-specifically binding to MHC tetramers. These findings have important implications for SIV-specific and other antigen-specific T cell function in these specific tissue locations, and suggest a model in which antigen-specific CD8+ T cells down modulate CD8 upon entering B cell follicles or the epithelial layer of tissues, or alternatively a model in which only antigen-specific CD8 T cells that down-modulate CD8 can enter B cell follicles or the epithelium. 相似文献
34.
In this study we examined whether human immunodeficiency virus type 1 (HIV-1) is equally susceptible to neutralization by a given antibody when the epitope of this antibody is introduced at different positions within the viral envelope glycoprotein (Env). To this end, we introduced two exogenous “epitope tags” at different locations within three major Env regions in two distinct HIV-1 isolates. We examined how the introduction of the exogenous epitopes affects Env expression, Env incorporation into virions, Env fusogenic potential, and viral susceptibility to neutralization. Our data indicate that even within the same Env region, the exact positioning of the epitope impacts the susceptibility of the virus to neutralization by the antibody that binds to that epitope. Our data also indicate that even if the same epitope is introduced in the exact same position on two different Envs, its exposure and, as a result, the neutralization susceptibility of the virus, can be very different. In contrast to the findings of previous studies conducted with HIV-1 isolates other than those used here, but in agreement with results obtained with simian immunodeficiency virus, we observed that tagging of the fourth variable region of Env (V4) did not result in neutralization by the anti-tag antibodies. Our data indicate that epitopes in V4 are not properly exposed within the functional HIV-1 trimeric Env spike, suggesting that V4 may not be a good target for vaccine-elicited neutralizing antibodies.The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) is expressed as a heavily glycosylated peptide of approximately 160 kDa (gp160), which is cleaved intracellularly into two noncovalently associated subunits: an extracellular subunit (gp120), responsible for CD4 and coreceptor (primarily CCR5 and/or CXCR4) binding, and a transmembrane subunit (gp41) that mediates fusion between viral and host cell membranes. Based on amino acid sequence homology analysis of gp120s derived from diverse HIV-1 isolates, gp120 is divided into five “constant” regions (C1 to C5) and five “variable” regions (also called “loops,” because most of them have cysteines in the N and C termini that form disulfide bonds). Despite their extensive amino acid variability, the variable loops of gp120 play central roles during the entry of the virus into the cell, for instance, by directly or indirectly modulating the interaction of Env with coreceptor molecules on the target surfaces during virus-cell fusion. They also offer protection from neutralizing antibodies (NAbs) by various mechanisms. The variable loops themselves are targets of NAbs, and during infection, the replicating virus accumulates mutations in the variable regions that allow it to escape the action of anti-variable loop-directed NAbs, while at the same time the variable loops are positioned within the Env trimer so that they prevent, or minimize, the binding of NAbs to more-conserved epitopes, such as the receptor and coreceptor binding sites (4, 5, 12, 15, 20, 23, 25, 27, 31).HIV-1 strains display distinct neutralization phenotypes. Some isolates, such as SF162, are generally susceptible to NAbs that bind to many distinct regions of Env, including the variable regions, while other isolates, such as YU2 or JRFL, are generally resistant to neutralization by the same NAbs (1). It has been proposed that irrespective of the overall neutralizing phenotype of HIV-1 isolates, the binding of only a single antibody per Env trimer on the virion surface can lead to neutralization, when all Env trimers present on the virion surface are bound by at least one antibody (32). This important observation also implies that the epitope specificity of an antibody may not be as important for neutralization as its ability to bind to its target within the trimeric Env structure. In fact, antibodies to diverse regions of Env, such as V1, V2, V3, and the receptor and coreceptor binding sites, can all neutralize HIV-1 (1, 3, 6, 8, 10, 18, 20, 23, 25, 27, 29, 30).In many cases, a given isolate will not be equally susceptible to neutralization by NAbs that bind to different Env regions, for example, the V3 loop and the CD4-binding site (CD4-BS). Whether differences in the neutralizing potentials of two antibodies that bind to distinct epitopes on HIV-1 Env are due to differences in the binding affinities of the two antibodies or whether they occur because the viruses are intrinsically more susceptible to NAbs that bind certain epitopes and not others (i.e., the relative importance of the various regions of Env in Env function and virus neutralization sensitivity differs) is not yet fully understood. One way to address these issues is to introduce small non-HIV Env amino acid sequences (tags) that are targets of known monoclonal antibodies (MAbs) at various positions within the viral Env and to examine how the placement of the same epitope at different positions within Env affects the neutralization phenotype of the virus.Foreign epitopes have been introduced into the variable regions of HIV and simian immunodeficiency virus (SIV) Envs, and their effects on viral neutralization potential have been examined (14, 19, 22, 33). Yang and colleagues (33) introduced the FLAG epitope into the V4 regions of three HIV-1 isolates (YU2, JRFL, and HxB2) displaying distinct neutralization phenotypes in response to anti-HIV NAbs; they found that all three pseudotyped viruses were equivalently neutralized by an anti-FLAG MAb. One important implication of that study is that neutralization-resistant isolates, such as YU2 or JRFL, are not intrinsically more resistant to neutralization than more-susceptible isolates, such as HxB2, so long as the antibody binds to its epitope on the functional virion-associated Env spike. A second implication is that since the FLAG epitope was exposed in the V4 loops of all three isolates, the V4 loop could theoretically be a good target for vaccine-elicited antibodies. In contrast, Pantophlet et al. (19) introduced the HA tag into various regions of the JRCSF (neutralization-resistant) and HxB2 (neutralization-sensitive) isolates and reported that JRCSF was intrinsically more resistant than HxB2 to anti-HA antibodies. This observation implies, therefore, that some HIV-1 strains (primary, neutralization-resistant strains) have developed mechanisms that limit the accessibility of multiple Env regions, including variable regions, to antibodies developed during infection. Laird and Desrosiers (14) introduced the FLAG epitope into two positions within each of the V1, V2, and V4 loops of SIV239 and SIV316. They reported that the functionality of Env was differentially affected by the precise location of the exogenous tag sequence within the variable loops examined. Importantly, and in contrast to what was reported for the HIV-1 isolates mentioned above, the SIV239 variants containing a V4 FLAG epitope were not neutralized by an anti-FLAG MAb. It appeared, however, that the FLAG epitope was not well exposed on the trimeric Env when introduced into the V4 loop of SIV but was exposed when introduced into the V1 loop of the same virus. Potentially, this means that the V4 loop is differentially exposed in the context of the HIV-1 and SIV Envs.The FLAG epitope (DYKDDDDK) is highly charged. Therefore, it is possible that the effect on Env function and epitope exposure could differ if a different exogenous epitope were inserted instead of FLAG. Here we examined the effect of variable loop tagging on the Env functions and viral neutralization phenotypes of two primary HIV-1 clade B isolates, SF162 (CCR5 tropic) and SF33 (CXCR4 tropic), using two exogenous epitopes (FLAG and hemagglutinin [HA] tags) positioned at multiple locations within the V1, V2, and V4 loops. By placing the same tag in several regions within each loop, we investigated the accessibilities of various parts of the same loop to a given NAb. By using two tags that differ significantly in amino acid composition (FLAG tag, DYKDDDDK; HA tag, YPYDVPDYA), we aimed at distinguishing between the effects of amino acid composition and the positioning of the tag on Env function and overall epitope exposure. Finally, identical evaluations of R5 and X4 Envs may provide information about the relative roles played in neutralization by variable loops in Envs displaying distinct coreceptor usage. We report that both the amino acid sequence and the position of the tag within and among the variable loops greatly affected the functionality of Env. In contrast to previous observations made with other HIV-1 Envs (33) but in agreement with what was reported for the SIV239 Env (14), we observed that tagging of the V4 loops of SF162 and SF33 did not render these isolates susceptible to neutralization by the corresponding anti-tag MAbs. 相似文献
35.
Manuel Garber Michael C Zody Harindra M Arachchi Aaron Berlin Sante Gnerre Lisa M Green Niall Lennon Chad Nusbaum 《Genome biology》2009,10(6):R60-6
The most recent release of the finished human genome contains 260 euchromatic gaps (excluding chromosome Y). Recent work has
helped explain a large number of these unresolved regions as 'structural' in nature. Another class of gaps is likely to be
refractory to clone-based approaches, and cannot be approached in ways previously described. We present an approach for closing
these gaps using 454 sequencing. As a proof of principle, we closed all three remaining non-structural gaps in chromosome
15. 相似文献
36.
Numerous studies show that practice can result in performance improvements on low-level visual perceptual tasks [1-5]. However, such learning is characteristically difficult and slow, requiring many days of training [6-8]. Here, we show that a multisensory audiovisual training procedure facilitates visual learning and results in significantly faster learning than unisensory visual training. We trained one group of subjects with an audiovisual motion-detection task and a second group with a visual motion-detection task, and compared performance on trials containing only visual signals across ten days of training. Whereas observers in both groups showed improvements of visual sensitivity with training, subjects trained with multisensory stimuli showed significantly more learning both within and across training sessions. These benefits of multisensory training are particularly surprising given that the learning of visual motion stimuli is generally thought to be mediated by low-level visual brain areas [6, 9, 10]. Although crossmodal interactions are ubiquitous in human perceptual processing [11-13], the contribution of crossmodal information to perceptual learning has not been studied previously. Our results show that multisensory interactions can be exploited to yield more efficient learning of sensory information and suggest that multisensory training programs would be most effective for the acquisition of new skills. 相似文献
37.
Winters MS Spellman DS Lambris JD 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3469-3474
Complement protein C3 is a 187-kDa (1641-aa) protein that plays a key role in complement activation and immune responses. Its hydrolyzed form, C3(H2O), is responsible for the initiation of the activation of alternative complement pathway. Previous analyses using mAbs, anilinonaphthalenesulfonate dyes, and functional studies have suggested that C3 is conformationally different from C3(H2O). We have used amide hydrogen/deuterium exchange and MALDI-TOF mass spectrometry to identify and localize structural differences between native C3 and C3(H2O). Both proteins were incubated in D2O for varying amounts of time, digested with pepsin, and then subjected to mass-spectrometric analysis. Of 111 C3 peptides identified in the MALDI-TOF analysis, 31 had well-resolved isotopic mass envelopes in both C3 and C3(H2O) spectra. Following the conversion of native C3 to C3(H2O), 17 of these 31 peptides exhibited a change in deuterium incorporation, suggesting a conformational change in these regions. Among the identified peptides, hydrogen/deuterium exchange data were obtained for peptides 944-967, 1211-1228, 1211-1231, 1259-1270, 1259-1273, 1295-1318, and 1319-1330, which span the factor H binding site on C3d and factor I cleavage sites, and peptides 1034-1048, 1049-1058, 1069-1080, 1130-1143, 1130-1145, 1211-1228, 1211-1231, 1259-1270, and 1259-1273, spanning 30% of the C3d region of C3. Our results suggest that hydrolysis may produce a looser (more open) structure in the C3d region, in which some of the changes affect the conversion of helical segments into coil segments facilitating interactions with factors I and H. This study represents the first detailed study mapping the regions of C3 involved in conformational transition when hydrolyzed to C3(H2O). 相似文献
38.
Winstone N Wilson AJ Morrow G Boggiano C Chiuchiolo MJ Lopez M Kemelman M Ginsberg AA Mullen K Coleman JW Wu CD Narpala S Ouellette I Dean HJ Lin F Sardesai NY Cassamasa H McBride D Felber BK Pavlakis GN Schultz A Hudgens MG King CR Zamb TJ Parks CL McDermott AB 《Journal of virology》2011,85(18):9578-9587
DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent "blips" in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication. 相似文献
39.
Brooks M. Henningsen Shuen Hon Sean F. Covalla Carolina Sonu D. Aaron Argyros Trisha F. Barrett Erin Wiswall Allan C. Froehlich Rintze M. Zelle 《Applied and environmental microbiology》2015,81(23):8108-8117
Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. 相似文献
40.
Greer CL Grygoruk A Patton DE Ley B Romero-Calderon R Chang HY Houshyar R Bainton RJ Diantonio A Krantz DE 《Journal of neurobiology》2005,64(3):239-258
Vesicular monoamine transporters (VMATs) mediate the transport of dopamine (DA), serotonin (5HT), and other monoamines into secretory vesicles. The regulation of mammalian VMAT and the related vesicular acetylcholine transporter (VAChT) has been proposed to involve membrane trafficking, but the mechanisms remain unclear. To facilitate a genetic analysis of vesicular transporter function and regulation, we have cloned the Drosophila homolog of the vesicular monoamine transporter (dVMAT). We identify two mRNA splice variants (DVMAT-A and B) that differ at their C-terminus, the domain responsible for endocytosis of mammalian VMAT and VAChT. DVMAT-A contains trafficking motifs conserved in mammals but not C. elegans, and internalization assays indicate that the DVMAT-A C-terminus is involved in endocytosis. DVMAT-B contains a divergent C-terminal domain and is less efficiently internalized from the cell surface. Using in vitro transport assays, we show that DVMAT-A recognizes DA, 5HT, octopamine, tyramine, and histamine as substrates, and similar to mammalian VMAT homologs, is inhibited by the drug reserpine and the environmental toxins 2,2,4,5,6-pentachlorobiphenyl and heptachlor. We have developed a specific antiserum to DVMAT-A, and find that it localizes to dopaminergic and serotonergic neurons as well as octopaminergic, type II terminals at the neuromuscular junction. Surprisingly, DVMAT-A is co-expressed at type II terminals with the Drosophila vesicular glutamate transporter. Our data suggest that DVMAT-A functions as a vesicular transporter for DA, 5HT, and octopamine in vivo, and will provide a powerful invertebrate model for the study of transporter trafficking and regulation. 相似文献