首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4864篇
  免费   452篇
  2024年   7篇
  2023年   22篇
  2022年   74篇
  2021年   170篇
  2020年   97篇
  2019年   114篇
  2018年   109篇
  2017年   107篇
  2016年   173篇
  2015年   306篇
  2014年   311篇
  2013年   337篇
  2012年   450篇
  2011年   460篇
  2010年   273篇
  2009年   243篇
  2008年   316篇
  2007年   299篇
  2006年   267篇
  2005年   244篇
  2004年   226篇
  2003年   200篇
  2002年   167篇
  2001年   25篇
  2000年   21篇
  1999年   16篇
  1998年   33篇
  1997年   17篇
  1996年   8篇
  1995年   15篇
  1994年   11篇
  1993年   10篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   17篇
  1988年   5篇
  1987年   13篇
  1985年   5篇
  1984年   8篇
  1982年   10篇
  1981年   13篇
  1980年   9篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   9篇
  1968年   6篇
排序方式: 共有5316条查询结果,搜索用时 265 毫秒
151.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   
152.
The antiapoptotic BCL2 family member MCL1 is normally up- and down-modulated in response to environmental signals and conditions, but is constitutively expressed in cancer where it promotes cell survival and drug resistance. A post-translational modification identified here, truncation at the N terminus, was found to act along with previously described ERK- and GSK3-induced phosphorylation events to regulate the turnover of the MCL1 protein and thus its availability for antiapoptotic effects. Although both N-terminally truncated and full-length MCL1 contain sequences enriched in proline, glutamic acid, serine, and threonine and were susceptible to proteasomal degradation, the truncated form decayed less rapidly and was maintained for an extended period in the presence of ERK activation. This was associated with extended cell survival because the truncated form of MCL1 (unlike those of BCL2 and BCLX) retained antiapoptotic activity. N-terminal truncation slightly increased the electrophoretic mobility of MCL1 and differed from the phosphorylation/band shift to decreased mobility, which occurs in the G2/M phase and was not found to affect MCL1 turnover. The N-terminally truncated form of MCL1 was expressed to varying extents in normal lymphoid tissues and was the predominant form present in lymphomas from transgenic mice and human tumor lines of B-lymphoid origin. The degradation versus stabilized expression of antiapoptotic MCL1 is thus controlled by N-terminal truncation as well as by ERK- and GSK3 (but not G2/M)-induced phosphorylation. These modifications may contribute to dysregulated MCL1 expression in cancer and represent targets for promoting its degradation to enhance tumor cell death.  相似文献   
153.
154.

Background

Because lymphatic filariasis (LF) elimination efforts are hampered by a dearth of economic information about the cost of mass drug administration (MDA) programs (using either albendazole with diethylcarbamazine [DEC] or albendazole with ivermectin), a multicenter study was undertaken to determine the costs of MDA programs to interrupt transmission of infection with LF. Such results are particularly important because LF programs have the necessary diagnostic and treatment tools to eliminate the disease as a public health problem globally, and already by 2006, the Global Programme to Eliminate LF had initiated treatment programs covering over 400 million of the 1.3 billion people at risk.

Methodology/Principal Findings

To obtain annual costs to carry out the MDA strategy, researchers from seven countries developed and followed a common cost analysis protocol designed to estimate 1) the total annual cost of the LF program, 2) the average cost per person treated, and 3) the relative contributions of the endemic countries and the external partners. Costs per person treated ranged from $0.06 to $2.23. Principal reasons for the variation were 1) the age (newness) of the MDA program, 2) the use of volunteers, and 3) the size of the population treated. Substantial contributions by governments were documented – generally 60%–90% of program operation costs, excluding costs of donated medications.

Conclusions/Significance

MDA for LF elimination is comparatively inexpensive in relation to most other public health programs. Governments and communities make the predominant financial contributions to actual MDA implementation, not counting the cost of the drugs themselves. The results highlight the impact of the use of volunteers on program costs and provide specific cost data for 7 different countries that can be used as a basis both for modifying current programs and for developing new ones.  相似文献   
155.
Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address questions such as the origins of cognitive differences.  相似文献   
156.
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.  相似文献   
157.
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.  相似文献   
158.
Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d-galactose catabolism are contained within a single protein-Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein-protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other.  相似文献   
159.
Mechanical forces imposed on lung tissue constitute major stimuli for normal lung development and postpneumonectomy (PNX) compensatory growth and remodeling. Superimposing developmental signals on PNX signals augments compensatory alveolar growth but exaggerates airway-parenchymal dissociation (i.e., dysanaptic lung growth); the latter tends to offset benefits derived from the former. In adult dogs after PNX, lobar expansion and growth of the remaining lobes were markedly non-uniform (Ravikumar et al. J Appl Physiol 97:1567-1574, 2004). We hypothesized that superimposing developmental and post-PNX signals further accentuates nonuniformity of lobar growth. We used high-resolution computed tomography (HRCT) to follow regional lung expansion and growth in foxhounds undergoing right PNX at 2.5 mo of age compared with litter-matched control (Sham) animals; scans were performed 4 and 10 mo following surgery, i.e., before and after somatic maturity. Air and tissue volumes were measured in each lobe; tissue volume estimated by HRCT includes air-free tissue and blood in small vessels <1 mm. Interlobar nonuniformity of tissue volume was absent at 4 mo but evident 10 mo after PNX; growth of the remaining left lower lobe gradually lagged behind other lobes. At maturity, nonuniformity of lobar growth in pneumonectomized puppies was similar to that previously reported in pneumonectomized adults. We conclude that superimposing developmental and post-PNX signals enhances some aspects of compensatory lung growth and remodeling without altering its nonuniform spatial distribution.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号