首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7238篇
  免费   792篇
  2022年   52篇
  2021年   189篇
  2020年   105篇
  2019年   127篇
  2018年   128篇
  2017年   124篇
  2016年   205篇
  2015年   365篇
  2014年   366篇
  2013年   412篇
  2012年   540篇
  2011年   588篇
  2010年   334篇
  2009年   309篇
  2008年   408篇
  2007年   378篇
  2006年   341篇
  2005年   337篇
  2004年   328篇
  2003年   265篇
  2002年   244篇
  2001年   98篇
  2000年   97篇
  1999年   63篇
  1998年   63篇
  1997年   48篇
  1995年   43篇
  1992年   81篇
  1991年   67篇
  1990年   59篇
  1989年   74篇
  1988年   58篇
  1987年   58篇
  1986年   61篇
  1985年   54篇
  1984年   65篇
  1983年   39篇
  1982年   45篇
  1981年   38篇
  1980年   38篇
  1979年   45篇
  1978年   47篇
  1977年   46篇
  1975年   36篇
  1974年   45篇
  1972年   43篇
  1971年   40篇
  1970年   36篇
  1969年   38篇
  1968年   39篇
排序方式: 共有8030条查询结果,搜索用时 204 毫秒
991.
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co‐occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.  相似文献   
992.
Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions. Coupling traditional genetic and biochemical approaches with advanced technologies, such as genomics and proteomics, provides an avenue for scientists to discover new aspects related to the molecular physiology of archaea. This review emphasizes the unusual properties of archaeal proteomes and how high-throughput and specialized mass spectrometry-based proteomic studies have provided insight into the molecular properties of archaeal cells.  相似文献   
993.
Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.  相似文献   
994.
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.  相似文献   
995.
This study compared the activity profile of national and international male field hockey athletes. Sixteen players (mean (±SD) age, stature, and body mass: 22 ± 4 y, 178 ± 8 cm, and 78 ± 9 kg, respectively) competing in the national-level Australian Hockey League (AHL) and 16 players [mean (±SD) age, stature, and body mass: 27 ± 4 y, 179 ± 5 cm, and 77 ± 5 kg, respectively] competing in the international Champions Trophy (CT) tournament participated in this study. Global positioning systems assessed total distance (TD), meters per minute (m·min(-1)), and high-speed running distance (HSR; >4.17 m·s(-1)). Differences in multistage fitness test performance, movement between competition, positions, and halves were assessed using effect size and percent difference ±90% confidence intervals. The CT players had a 10.1% greater multistage fitness test, 13.9% and 42.0% more TD and HSR, respectively, than AHL. During CT, strikers performed 10.1 ± 7.4% less HSR than midfielders and 26.6 ± 8.2% more HSR than defenders. The AHL defenders covered less TD and HSR distance compared with strikers and midfielders (8.1 ± 3.6% and 8.4 ± 2.6%; 36.1 ± 11.1% and 51.5 ± 12.1%, respectively). The AHL strikers, midfielders, and defenders (19.9 ± 8.8%, 32.1 ± 7.9%, and 30.3 ± 10.7%, respectively), all performed less HSR distance than their CT counterparts. Finally, TD decreased from the first to second halves across all positions (6.1-7.5%) in both competitions. International competition increases the running profile of hockey players, with greater HSR at the elite level and positional differences including decreased running during the second half in both competitions.  相似文献   
996.
The Revised Classification of Eukaryotes   总被引:1,自引:0,他引:1  
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re‐introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under‐sampled areas and from environmental genomic information.  相似文献   
997.
998.
We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.  相似文献   
999.
We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.  相似文献   
1000.
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号