首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7278篇
  免费   792篇
  2022年   92篇
  2021年   189篇
  2020年   105篇
  2019年   127篇
  2018年   128篇
  2017年   124篇
  2016年   205篇
  2015年   365篇
  2014年   366篇
  2013年   412篇
  2012年   540篇
  2011年   588篇
  2010年   334篇
  2009年   309篇
  2008年   408篇
  2007年   378篇
  2006年   341篇
  2005年   337篇
  2004年   328篇
  2003年   265篇
  2002年   244篇
  2001年   98篇
  2000年   97篇
  1999年   63篇
  1998年   63篇
  1997年   48篇
  1995年   43篇
  1992年   81篇
  1991年   67篇
  1990年   59篇
  1989年   74篇
  1988年   58篇
  1987年   58篇
  1986年   61篇
  1985年   54篇
  1984年   65篇
  1983年   39篇
  1982年   45篇
  1981年   38篇
  1980年   38篇
  1979年   45篇
  1978年   47篇
  1977年   46篇
  1975年   36篇
  1974年   45篇
  1972年   43篇
  1971年   40篇
  1970年   36篇
  1969年   38篇
  1968年   39篇
排序方式: 共有8070条查询结果,搜索用时 15 毫秒
971.
The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP(3) production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis.  相似文献   
972.

Background

Intrahepatic cholestasis of pregnancy (ICP) has important fetal implications. There is increased risk for poor fetal outcomes, including preterm delivery, meconium staining of amniotic fluid, respiratory distress, fetal distress and demise.

Methods

One hundred and one women diagnosed with ICP between January 2005 and March 2009 at San Francisco General Hospital were included in this study. Single predictor logistic regression models were used to assess the associations of maternal clinical and biochemical predictors with fetal complications. Clinical predictors analyzed included age, race/ethnicity, gravidity, parity, history of liver or biliary disease, history of ICP in previous pregnancies, and induction. Biochemical predictors analyzed included serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, direct bilirubin, albumin, total protein, and total bile acids (TBA).

Results

The prevalence of ICP was 1.9%. Most were Latina (90%). Labor was induced in the majority (87%) and most were delivered by normal spontaneous vaginal delivery (84%). Fetal complications occurred in 33% of the deliveries, with respiratory distress accounting for the majority of complications. There were no statistically significant clinical or biochemical predictors associated with an increased risk of fetal complications. Elevated TBA had little association with fetal complications until reaching greater than 100 µmoL/L, with 3 out of 5 having reported complications. ICP in previous pregnancies was associated with decreased risk of fetal complications (OR 0.21, p = 0.046). There were no cases of late term fetal demise.

Conclusions

Maternal clinical and laboratory features, including elevated TBA, did not appear to be substantial predictors of fetal complications in ICP.  相似文献   
973.
In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ?-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ?-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.  相似文献   
974.
975.
CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.  相似文献   
976.
Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.  相似文献   
977.
Jia L  Yan W  Zhu C  Agrama HA  Jackson A  Yeater K  Li X  Huang B  Hu B  McClung A  Wu D 《PloS one》2012,7(3):e32703
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice.  相似文献   
978.
979.
980.
We present a systematic and quantitative model of huddling penguins. In this mathematical model, each individual penguin in the huddle seeks only to reduce its own heat loss. Consequently, penguins on the boundary of the huddle that are most exposed to the wind move downwind to more sheltered locations along the boundary. In contrast, penguins in the interior of the huddle neither have the space to move nor experience a significant heat loss, and they therefore remain stationary. Through these individual movements, the entire huddle experiences a robust cumulative effect that we identify, describe, and quantify. This mathematical model requires a calculation of the wind flowing around the huddle and of the resulting temperature distribution. Both of these must be recomputed each time an individual penguin moves since the huddle shape changes. Using our simulation results, we find that the key parameters affecting the huddle dynamics are the number of penguins in the huddle, the wind strength, and the amount of uncertainty in the movement of the penguins. Moreover, we find that the lone assumption of individual penguins minimizing their own heat loss results in all penguins having approximately equal access to the warmth of the huddle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号