首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7255篇
  免费   792篇
  2022年   69篇
  2021年   189篇
  2020年   105篇
  2019年   127篇
  2018年   128篇
  2017年   124篇
  2016年   205篇
  2015年   365篇
  2014年   366篇
  2013年   412篇
  2012年   540篇
  2011年   588篇
  2010年   334篇
  2009年   309篇
  2008年   408篇
  2007年   378篇
  2006年   341篇
  2005年   337篇
  2004年   328篇
  2003年   265篇
  2002年   244篇
  2001年   98篇
  2000年   97篇
  1999年   63篇
  1998年   63篇
  1997年   48篇
  1995年   43篇
  1992年   81篇
  1991年   67篇
  1990年   59篇
  1989年   74篇
  1988年   58篇
  1987年   58篇
  1986年   61篇
  1985年   54篇
  1984年   65篇
  1983年   39篇
  1982年   45篇
  1981年   38篇
  1980年   38篇
  1979年   45篇
  1978年   47篇
  1977年   46篇
  1975年   36篇
  1974年   45篇
  1972年   43篇
  1971年   40篇
  1970年   36篇
  1969年   38篇
  1968年   39篇
排序方式: 共有8047条查询结果,搜索用时 31 毫秒
941.
942.
943.
The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence and expression. Here, we show that mice lacking the three C-type isoforms are phenotypically indistinguishable from the Pcdhg null mutants, displaying virtually identical cellular and synaptic alterations resulting from neuronal apoptosis. By contrast, mice lacking three A-type isoforms exhibit no detectable phenotypes. Remarkably, however, genetically blocking apoptosis rescues the neonatal lethality of the C-type isoform knockouts, but not that of the Pcdhg null mutants. We conclude that the role of the Pcdhg gene cluster in neuronal survival is primarily, if not specifically, mediated by its C-type isoforms, whereas a separate role essential for postnatal development, likely in neuronal wiring, requires isoform diversity.  相似文献   
944.
Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines.  相似文献   
945.
? Premise of the study: Despite their highly reduced morphology, Hydatellaceae bear the unmistakable embryological signature of Nymphaeales, including a starch-rich maternal perisperm and a minute biparental endosperm and embryo. The co-occurrence of perisperm and endosperm in Nymphaeales and other lineages of flowering plants, and their respective functions during the course of seed development and embryo germination, remain enigmatic. ? Methods: Development of the embryo, endosperm, and perisperm was examined histologically from fertilization through germination in flowers and fruits of Trithuria submersa. ? Key results: The embryo of T. submersa initiates two cotyledons prior to seed maturity/dormancy, and their tips remain in contact with the endosperm throughout germination. The endosperm persists as a single layer of cells and serves as the interface between the embryo and the perisperm. The perisperm contains carbohydrates and proteins, and functions as the main storage tissue. The endosperm accumulates proteins and aleurone grains and functions as a transfer cell layer. ? Conclusions: In Nymphaeales, the multiple roles of a more typical endosperm have been separated into two different tissues and genetic entities: a maternal perisperm (nutrient acquisition, storage, mobilization) and a minute biparental endosperm (nutrient transfer to the embryo). The presence of perisperms among several other ancient lineages of angiosperms suggests a modest degree of developmental and functional lability for the nutrient storage tissue (perisperm or endosperm) within seeds during the early evolution of flowering plants. Finally, we examine the evolutionary developmental hypothesis that, contrary to longstanding assumptions, an embryo-nourishing perisperm along with a minute endosperm may represent the plesiomorphic condition for flowering plants.  相似文献   
946.
947.
948.
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.  相似文献   
949.
The human ALC1/CHD1L oncogene encodes an SNF2 family ATPase with a macrodomain that binds poly(ADP-ribose) (PAR). We and others previously showed that ALC1 possesses a cryptic ATP-dependent nucleosome remodeling activity that is potently activated in the presence of PARP1 and NAD+, its substrate for PAR synthesis. In this work, we dissected the mechanism by which PARP1 and NAD+ activate ALC1 nucleosome remodeling. We demonstrate that ALC1 activation depends on the formation of a stable ALC1·PARylated PARP1·nucleosome intermediate. In addition, by exploiting a novel PAR footprinting assay, we obtained evidence that the ALC1 macrodomain remains stably associated with PAR on autoPARylated PARP1 during the course of nucleosome remodeling reactions. Taken together, our findings are consistent with the model that PAR present on PARylated PARP1 acts as an allosteric effector of ALC1 nucleosome remodeling activity.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号