首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   35篇
  国内免费   2篇
  643篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   44篇
  2020年   16篇
  2019年   20篇
  2018年   21篇
  2017年   18篇
  2016年   40篇
  2015年   27篇
  2014年   41篇
  2013年   49篇
  2012年   41篇
  2011年   42篇
  2010年   22篇
  2009年   19篇
  2008年   31篇
  2007年   25篇
  2006年   22篇
  2005年   29篇
  2004年   25篇
  2003年   16篇
  2002年   20篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1979年   1篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
71.
The putative linker histone in Saccharomyces cerevisiae, Hho1p, has two regions of sequence (GI and GII) that are homologous to the single globular domains of linker histones H1 and H5 in higher eukaryotes. However, the two Hho1p "domains" differ with respect to the conservation of basic residues corresponding to the two putative DNA-binding sites (sites I and II) on opposite faces of the H5 globular domain. We find that GI can protect chromatosome-length DNA, like the globular domains of H1 and H5 (GH1 and GH5), but GII does not protect. However, GII, like GH1 and GH5, binds preferentially (and with higher affinity than GI) to four-way DNA junctions in the presence of excess linear DNA competitor, and binds more tightly than GI to linker-histone-depleted chromatin. Surprisingly, in 10 mM sodium phosphate (pH 7.0), GII is largely unfolded, whereas GI, like GH1 and GH5, is structured, with a high alpha-helical content. However, in the presence of high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate) GII is also folded; the anions presumably mimic DNA in screening the positive charge. This raises the possibility that chromatin-bound Hho1p may be bifunctional, with two folded nucleosome-binding domains.  相似文献   
72.
By using a homology-based bioinformatics approach, a structural model of the vaccinia virus (VV) I7L proteinase was developed. A unique chemical library of approximately 51,000 compounds was computationally queried to identify potential active site inhibitors. The resulting biased subset of compounds was assayed for both toxicity and the ability to inhibit the growth of VV in tissue culture cells. A family of chemotypically related compounds was found which exhibits selective activity against orthopoxviruses, inhibiting VV with 50% inhibitory concentrations of 3 to 12 microM. These compounds exhibited no significant cytotoxicity in the four cell lines tested and did not inhibit the growth of other organisms such as Saccharomyces cerevisiae, Pseudomonas aeruginosa, adenovirus, or encephalomyocarditis virus. Phenotypic analyses of virus-infected cells were conducted in the presence of active compounds to verify that the correct biochemical step (I7L-mediated core protein processing) was being inhibited. Electron microscopy of compound-treated VV-infected cells indicated a block in morphogenesis. Compound-resistant viruses were generated and resistance was mapped to the I7L open reading frame. Transient expression with the mutant I7L gene rescued the ability of wild-type virus to replicate in the presence of compound, indicating that this is the only gene necessary for resistance. This novel class of inhibitors has potential for development as an efficient antiviral drug against pathogenic orthopoxviruses, including smallpox.  相似文献   
73.
Utilizing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we measured hyperplasia and NF-κB activation during progression (days 6 and 12 post-infection) and regression (days 20–34 post-infection) phases of TMCH. NF-κB activity increased at progression in conjunction with bacterial attachment and translocation to the colonic crypts and decreased 40% by day 20. NF-κB activity at days 27 and 34, however, remained 2–3-fold higher than uninfected control. Expression of the downstream target gene CXCL-1/KC in the crypts correlated with NF-κB activation kinetics. Phosphorylation of cellular IκBα kinase (IKK)α/β (Ser176/180) was elevated during progression and regression of TMCH. Phosphorylation (Ser32/36) and degradation of IκBα, however, contributed to NF-κB activation only from days 6 to 20 but not at later time points. Phosphorylation of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) paralleled IKKα/β kinetics at days 6 and 12 without declining with regressing hyperplasia. siRNAs to MEK, ERK, and p38 significantly blocked NF-κB activity in vitro, whereas MEK1/2-inhibitor (PD98059) also blocked increases in MEK1/2, ERK1/2, and IKKα/β thereby inhibiting NF-κB activity in vivo. Cellular and nuclear levels of Ser536-phosphorylated (p65536) and Lys310-acetylated p65 subunit accompanied functional NF-κB activation during TMCH. RSK-1 phosphorylation at Thr359/Ser363 in cellular/nuclear extracts and co-immunoprecipitation with cellular p65-NF-κB overlapped with p65536 kinetics. Dietary pectin (6%) blocked NF-κB activity by blocking increases in p65 abundance and nuclear translocation thereby down-regulating CXCL-1/KC expression in the crypts. Thus, NF-κB activation persisted despite the lack of bacterial attachment to colonic mucosa beyond peak hyperplasia. The MEK/ERK/p38 pathway therefore seems to modulate sustained activation of NF-κB in colonic crypts in response to C. rodentium infection.  相似文献   
74.
We have used limited trypsin digestion and reactivity with PEG-maleimides (MPEG) to study Ca2+-induced conformational changes of IP3Rs in their native membrane environment. We found that Ca2+ decreased the formation of the 95-kDa C-terminal tryptic fragment when detected by an Ab directed at a C-terminal epitope (CT-1) but not with an Ab recognizing a protected intraluminal epitope. This suggests that Ca2+ induces a conformational change in the IP3R that allows trypsin to cleave the C-terminal epitope. Half-maximal effects of Ca2+ were observed at ∼0.5 μm and was sensitive to inhibition by IP3. Ca2+ also stimulated the reaction of MPEG-5 with an endogenous thiol in the 95-kDa fragment. This effect was eliminated when six closely spaced cysteine residues proximal to the transmembrane domains were mutated (C2000S, C2008S, C2010S, C2043S, C2047S, and C2053S) or when the N-terminal suppressor domain (amino acids 1–225) was deleted. A cysteine substitution mutant introduced at the C-terminal residue (A2749C) was freely accessible to MPEG-5 or MPEG-20 in the absence of Ca2+. However, cysteine substitution mutants in the interior of the tail were poorly reactive with MPEG-5, although reactivity was enhanced by Ca2+. We conclude the following: a) that large conformational changes induced by Ca2+ can be detected in IP3Rs in situ; b) these changes may be driven by Ca2+ binding to the N-terminal suppressor domain and expose a group of closely spaced endogenous thiols in the channel domain; and c) that the C-terminal cytosol-exposed tail of the IP3R may be relatively inaccessible to regulatory proteins unless Ca2+ is present.  相似文献   
75.
76.
77.
Fennel (Foeniculum vulgare Mill) is a high-value medicinal and essential oil bearing plant used extensively in pharmaceutical, food and cosmetic industries. A pot experiment was carried out in the natural conditions of net house to resolve whether the foliar application of salicylic acid (SA) might enhance the growth, yield and essential oil production of fennel. Plants were sprayed three times with SA. The first spray was carried out at 40?days after sowing (DAS); the second and third sprays were applied one and 2?weeks later, the plants were sprayed with deionised water (control) and different concentrations of SA (10?5, 10?4 and 10?3?M). The foliar spray of SA at 10?4?M significantly enhanced the vegetative growth (shoot and root lengths, fresh and dry weights), physiological and biochemical characteristics (chl ??a??, chl ??b??, total chlorophyll and carotenoids contents, nitrate reductase activity, carbonic anhydrase activity, leaf-N, -P and -K contents), yield characteristics (number of umbels and fruits, 1,000-seed weight and seed yield) and essential oil yield of fennel. GLC analysis revealed the significant increase in the components of essential oil, viz. trans-anethole (80.4?C84.7?%), methyl chavicol (2.3?C2.5?%) and fenchone (5.6?C7.9?%). It was concluded that foliar spray of SA at 10?4?M might be employed for enhancing the plant growth as well as yield and quality of essential oil of fennel.  相似文献   
78.
79.
Proteases are one of the highest value commercial enzymes as they have broad applications in food, pharmaceutical, detergent, and dairy industries and serve as vital tools in determination of structure of proteins and polypeptides. Multiple application of these enzymes stimulated interest to discover them with novel properties and considerable advancement of basic research into these enzymes. A broad understanding of the active site of the enzyme and of the mechanism of its inactivation is essential for delineating its structure-function relationship. Primary structure analysis of alkaline protease showed 42% of its content to be alpha helix making it stable for three dimensional structure modeling. Homology model of alkaline protease has been constructed using the X-ray structure (3F7O) as a template and swiss model as the workspace. The model was validated by ProSA, SAVES, PROCHECK, PROSAII and RMSD. The results showed the final refined model is reliable. It has 53% amino acid sequence identity with the template, 0.24 Å as RMSD and has -7.53 as Z-score, the Ramachandran plot analysis showed that conformations for 83.4 % of amino acid residues are within the most favored regions and only 0.4% in the disallowed regions.  相似文献   
80.
Age-related cataract is clinically and genetically heterogeneous disorder affecting the ocular lens, and the leading cause of vision loss and blindness worldwide. Here we screened nonsynonymous single nucleotide polymorphisms (nsSNPs) of a novel gene, EPHA2 responsible for age related cataracts. The SNPs were retrieved from dbSNP. Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on protein was predicted by PolyPhen and SIFT respectively. FASTSNP was used for functional analysis and estimation of risk score. The functional impact on the EPHA2 protein was evaluated by using SWISSPDB viewer and NOMAD-Ref server. Our analysis revealed 16 SNPs as nonsynonymous out of which 6 nsSNPs, namely rs11543934, rs2291806, rs1058371, rs1058370, rs79100278 and rs113882203 were found to be least stable by I-Mutant 2.0 with DDG value of > -1.0. nsSNPs, namely rs35903225, rs2291806, rs1058372, rs1058370, rs79100278 and rs113882203 showed a highly deleterious tolerance index score of 0.00 by SIFT server. Four nsSNPs namely rs11543934, rs2291806, rs1058370 and rs113882203 were found to be probably damaging with PSIC score of ≥ 2. 0 by Polyp hen server. Three nsSNPs namely, rs11543934, rs2291806 and rs1058370 were found to be highly polymorphic with a risk score of 3-4 with a possible effect of Non-conservative change and splicing regulation by FASTSNP. The total energy and RMSD value was higher for the mutant-type structure compared to the native type structure. We concluded that the nsSNP namely rs2291806 as the potential functional polymorphic that is likely to have functional impact on the EPHA2 gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号