首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2573篇
  免费   179篇
  国内免费   4篇
  2024年   6篇
  2023年   18篇
  2022年   80篇
  2021年   113篇
  2020年   116篇
  2019年   195篇
  2018年   161篇
  2017年   118篇
  2016年   137篇
  2015年   132篇
  2014年   182篇
  2013年   233篇
  2012年   228篇
  2011年   215篇
  2010年   125篇
  2009年   98篇
  2008年   91篇
  2007年   118篇
  2006年   90篇
  2005年   65篇
  2004年   54篇
  2003年   52篇
  2002年   43篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   7篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有2756条查询结果,搜索用时 343 毫秒
951.
Recent research has shown that the maintenance of relevant liver functions ex vivo requires models in which the cells exhibit an in vivo‐like phenotype, often achieved by reconstitution of appropriate cellular interactions. Multiple different models have been presented that differ in the cells utilized, media, and culture conditions. Furthermore, several technologically different approaches have been presented including bioreactors, chips, and plate‐based systems in fluidic or static media constituting of chemically diverse materials. Using such models, the ability to predict drug metabolism, drug toxicity, and liver functionality have increased tremendously as compared to conventional in vitro models in which cells are cultured as 2D monolayers. Here, the authors highlight important considerations for microphysiological systems for primary hepatocyte culture, review current culture paradigms, and discuss their opportunities for studies of drug metabolism, hepatotoxicity, liver biology, and disease.  相似文献   
952.
Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.  相似文献   
953.
Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome.  相似文献   
954.
Stress affects psychomotor profiles and exploratory behavior in response to environmental features. Here we investigated psychomotor and exploratory patterns induced by stress in a simple open-field arena and a complex, multi-featured environment. Groups of rats underwent seven days of restraint stress or no-stress conditions and were individually tested in three versions of the ziggurat task (ZT) that varied according to environmental complexity. The hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis due to stress procedure was evaluated by the pre- and post-stress levels of circulating corticosterone (CORT). Horizontal activity, exploration, and motivation were measured by the number of fields entered, the time spent in the central fields, path length and speed, and stop duration. In addition, vertical exploratory behavior was measured by the times rats climbed onto ziggurats. Stress-induced psychomotor changes were indicated by reduced path length and path speed and increased duration of stops only within the complex arena of the ZT. Rats in stress groups also showed a significant decline in the vertical movements as measured by the number of climbing onto ziggurats. No stress-induced changes were revealed by the simple open-field arena. The exploratory patterns of stressed animals suggest psychomotor inhibition and reduced novelty-seeking behaviors in an environment-dependent manner. Thus, multi-featured arenas that require complex behavioral strategies are ideally suited to reveal the inhibitory effects of stress on psychomotor capabilities in rodents.  相似文献   
955.
In this study correlations between body size and muscle fatty and amino acid content of two species of goby, round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis) caught from river Rhine (Germany) were investigated. Among saturated fatty acids (SFAs), mono- (MUFA) and polyunsaturated fatty acids (PUFAs) only SFAs were significantly higher in round goby than monkey goby (P < 0.05). In general, the correlation between body size of both gobies and the content of most of the individual fatty acids was not significant. In monkey goby, the content of palmitic acid (C16:0) and oleic acid (C18:1 n-9) was positively correlated with weight (r = 0.43) and total length (r = ?0.58), respectively, and the content of docosahexaenoic acid (DHA) increased with condition factor (r = 0.50). The content of threonine, arginine, valine, phenylalanine and isoleucine in monkey goby was higher than those of round goby (P < 0.05). In round goby the three essential amino acids arginine, valine and leucine were positively (P < 0.05) correlated with body length, which indicates that longer round gobies are of higher nutritional value.  相似文献   
956.
The spatial organization of microtubule polarity, and the interplay between microtubule polarity and protein localization, is thought to be crucial for spindle assembly, anaphase, and cytokinesis, but these phenomena remain poorly understood, in part due to the difficulty of measuring microtubule polarity in spindles. We develop and implement a method to nonperturbatively and quantitatively measure microtubule polarity throughout spindles using a combination of second-harmonic generation and two-photon fluorescence. We validate this method using computer simulations and by comparison to structural data on spindles obtained from electron tomography and laser ablation. This method should provide a powerful tool for studying spindle organization and function, and may be applicable for investigating microtubule polarity in other systems.  相似文献   
957.
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.  相似文献   
958.
Compressibility of biological tissues such as brain parenchyma is related to its poroelastic nature characterized by the geometry and pressure of vasculature and interconnected fluid-filled spaces. Thus, cerebral volumetric strain may be sensitive to intracranial pressure which can be altered under physiological conditions. So far volumetric strain has attained little attention in studies of the mechanical behavior of the brain.  相似文献   
959.
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L?1 as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L?1), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.  相似文献   
960.
Ice nucleation proteins (INP) are a major cause of frost damage in plants and crops. Here, an INP gene from Fusarium acuminatum was optimized, synthesized, expressed in E.coli and subsequently purified and characterized. The protein belongs to the second class of ice nucleation proteins with an optimum pH 5.5, relative activity and stability between pH 5 and 9.5 and up to 45 °C. The protein was fully active and stable in the presence of dimethyl sulfoxide (DMSO), dioxane, acetone and ethyl acetate. Moreover, it retained over 50 % of its original activity in the presence of polyvinyl alcohol. The 3D structure model of the INP-F indicated the protein had three distinct domains as exist in other ice nucleation proteins with some variations. Considering these promising results, INP-F could be a novel candidate for industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号