首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   12篇
  国内免费   1篇
  2023年   5篇
  2022年   8篇
  2021年   22篇
  2020年   6篇
  2019年   13篇
  2018年   10篇
  2017年   4篇
  2016年   11篇
  2015年   15篇
  2014年   12篇
  2013年   16篇
  2012年   16篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有191条查询结果,搜索用时 547 毫秒
51.
Colorectal cancer (CRC) is one of the topmost causes of death in males in Saudi Arabia. In females, it was also within the top five cancer types. CRC is heterogeneous in terms of pathogenicity and molecular genetic pathways. It is very important to determine the genetic causes of CRC in the Saudi population. BRAF is one of the major genes involved in cancers, it participates in transmitting chemical signals from outside the cells into the nucleus of the cells and it is also shown to participate in cell growth. In this study, we mapped the spectrum of BRAF mutations in 100 Saudi patients with CRC. We collected tissue samples from colorectal cancer patients, sequenced the BRAF gene to identify gene alterations, and analyzed the data using different bioinformatics tools. We designed a three-dimensional (3D) homology model of the BRAF protein using the Swiss Model automated homology modeling platform to study the structural impact of these mutations using the Missense3D algorithm. We found six mutations in 14 patients with CRC. Four of these mutations are being reported for the first time. The novel frameshift mutations observed in CRC patients, such as c.1758delA (E586E), c.1826insT (Q609L), c.1860insA and c.1860insA/C (M620I), led to truncated proteins of 589, 610, and 629 amino acids, respectively, and potentially affected the structure and the normal functions of BRAF. These findings provide insights into the molecular etiology of CRC in general and to the Saudi population. BRAF genetic testing may also guide treatment modalities, and the treatment may be optimized based on personalized gene variations.  相似文献   
52.
Anaphylaxis is a sudden immune reaction against an allergen that can potentially lead to Anaphylactic Shock (AS). This immune reaction is characterized by an increase in Immunoglobulin-E (IgE) type of antibodies that bind with FcεRI receptors on mast cells to release inflammatory mediators. Various intracellular signaling molecules downstream of IgE/ FcεRI axis play a potential role in cytokine, chemokine and eicosanoid secretion as well as degranulation of immune cells causing vasodilation, vascular permeability, and reduction of intravascular volume leading to cardiovascular collapse. Here, we discuss the cellular machinery of anaphylaxis and the de novo paradigm shift in the cellular aspects of AS.  相似文献   
53.
Mutations in Parkin and PINK1 cause an inherited early‐onset form of Parkinson's disease. The two proteins function together in a mitochondrial quality control pathway whereby PINK1 accumulates on damaged mitochondria and activates Parkin to induce mitophagy. How PINK1 kinase activity releases the auto‐inhibited ubiquitin ligase activity of Parkin remains unclear. Here, we identify a binding switch between phospho‐ubiquitin (pUb) and the ubiquitin‐like domain (Ubl) of Parkin as a key element. By mutagenesis and SAXS, we show that pUb binds to RING1 of Parkin at a site formed by His302 and Arg305. pUb binding promotes disengagement of the Ubl from RING1 and subsequent Parkin phosphorylation. A crystal structure of Parkin Δ86–130 at 2.54 Å resolution allowed the design of mutations that specifically release the Ubl domain from RING1. These mutations mimic pUb binding and promote Parkin phosphorylation. Measurements of the E2 ubiquitin‐conjugating enzyme UbcH7 binding to Parkin and Parkin E3 ligase activity suggest that Parkin phosphorylation regulates E3 ligase activity downstream of pUb binding.  相似文献   
54.
55.
International Journal of Peptide Research and Therapeutics - DNA replication is one of the specific processes to be considered in all the living organisms, specifically eukaryotes. The prevalence...  相似文献   
56.
Studying social‐behavior and species associations in ecological communities is challenging because it is difficult to observe the interactions in the field. Animal behavior is especially difficult to observe when selection of habitat and activities are linked to energy costs of long‐distance movement. Migrating communities tend to be resource specific and prefer environments that offer more suitability for coexisting in a shared space and time. Given the recent advances in digital technologies, digital video recording systems are gaining popularity in wildlife research and management. We used digital video recording cameras to study social interactions and species–habitat linkages for wintering waterbirds communities in shared habitats. Examining over 8,640 hr of video footages, we built tetrapartite social‐behavioral association network of wintering waterbirds over habitat (n = 5) selection events in sites with distinct management regimes. We analyzed these networks to identify hub species and species role in activity persistence, and to explore the effects of hydrological regime on these network characteristics. Although the differences in network attributes were not significant at treatment level (p = .297) in terms of network composition and keystone species composition, our results indicated that network attributes were significantly different (p = .000, r 2 = .278) at habitat level. There were evidences suggesting that the habitat quality was better at the managed sites, where the formed networks had more species, more network nodes and edges, higher edge density, and stronger intra‐ and inter‐species interactions. In addition, we also calculated the species interaction preference scores (SIPS) and behavioral interaction preference scores (BIPS) of each network. The results showed that species synchronize activities in shared space for temporal niche partitioning in order to avoid or minimize any potential competition for shared space. Our social network analysis (SNA) approach is likely to provide a practical use for ecosystem management and biodiversity conservation.  相似文献   
57.
The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.  相似文献   
58.
Abstract

The study of microbial communities in river sediments contaminated by thallium (Tl) is necessary to achieve the information for in-situ microbially mediated bioremediation. However, little is known about the microbial community in Tl-contaminated river sediments. In the present study, we characterized the microbial community and their responses to Tl pollution in river sediments from the Tl-mineralized Lanmuchang area, Southwest Guizhou, China. Illumina sequencing of 16S rRNA amplicons revealed that over 40 phyla belong to the domain bacteria. In all samples, Proteobacteria, Cyanobacteria, and Actinobacteria were the most dominant phyla. Based on the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis) analysis, microbial composition of each segment was distinct, indicating in-situ geochemical parameters (including Tl, sulfate, TOC, Eh, and pH) had influenced on the microbial communities. Moreover, canonical correspondence analysis (CCA) was employed to further elucidate the impact of geochemical parameters on the distribution of microbial communities in local river sediments. The results indicated that a number of microbial communities including Cyanobacteria, Spirochaete, Hydrogenophaga, and Acinetobacter were positively correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance or to biogeochemical cycling of Tl. Our results suggested a reliable location for the microbial community’s diversity in the presence of high concentrations of Tl and might have a potential association for in-situ bioremediation strategies of Tl-contaminated river. Overall, in situ microbial community could provide a useful tool for monitoring and assessing geo-environmental stressors in Tl-polluted river sediments.  相似文献   
59.
60.
SsfX3 is a GDSL family acyltransferase that transfers salicylate to the C-4 hydroxyl of a tetracycline intermediate in the penultimate step during biosynthesis of the anticancer natural product SF2575. The C-4 salicylate takes the place of the more common C-4 dimethylamine functionality, making SsfX3 the first acyltransferase identified to act on a tetracycline substrate. The crystal structure of SsfX3 was determined at 2.5 Å, revealing two distinct domains as follows: an N-terminal β-sandwich domain that resembles a carbohydrate-binding module, and a C-terminal catalytic domain that contains the atypical α/β-hydrolase fold found in the GDSL hydrolase family of enzymes. The active site lies at one end of a large open binding pocket, which is spatially defined by structural elements from both the N- and C-terminal domains. Mutational analysis in the putative substrate binding pocket identified residues from both domains that are important for binding the acyl donor and acceptor. Furthermore, removal of the N-terminal carbohydrate-binding module-like domain rendered the stand-alone α/β-hydrolase domain inactive. The additional noncatalytic module is therefore proposed to be required to define the binding pocket and provide sufficient interactions with the spatially extended tetracyclic substrate. SsfX3 was also demonstrated to accept a variety of non-native acyl groups. This relaxed substrate specificity toward the acyl donor allowed the chemoenzymatic biosynthesis of C-4-modified analogs of the immediate precursor to the bioactive SF2575; these were used to assay the structure activity relationships at the C-4 position.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号