首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   5篇
  94篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1938年   1篇
  1933年   3篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
21.
Dephosphorylation of central photosynthetic proteins regulates their turnover in plant thylakoid membranes. A membrane protein phosphatase from spinach thylakoids was purified 13000-fold using detergent-engaged FPLC. The purified enzyme exhibited characteristics typical of eukaryotic Ser/Thr phosphatases of the PP2A family in that it was inhibited by okadaic acid (IC(50) = 0.4 nM) and tautomycin (IC(50) = 25 nM), irreversibly bound to microcystin-agarose, and recognized by a polyclonal antibody raised against a recombinant catalytic subunit of human PP2A. Furthermore, the anti-PP2A antibody inhibited protein dephosphorylation in isolated thylakoids. The phosphatase copurified with TLP40, a cyclophilin-like peptidyl-prolyl isomerase located in the thylakoid lumen. TLP40 could be released from the phosphatase immobilized on microcystin-agarose by high-salt treatment. Binding of cyclosporin A (CsA) to TLP40 led to thylakoid phosphatase activation, while cyclophilin substrates, prolyl-containing oligopeptides, inhibited protein dephosphorylation. This dephosphorylation could be modulated by CsA or oligopeptides only after the thylakoids had been ruptured to expose the lumenal membrane surface where the TLP40 is located. Regulation of the PP2A-like phosphatase at the outer thylakoid surface is likely to operate via reversible binding of TLP40 to the inner membrane surface. This is a first example of transmembrane regulation in which the activity of phosphatase is altered by the binding of a cyclophilin to a site other than the active one. We propose that signaling from TLP40 to the protein phosphatase coordinates dephosphorylation and protein folding, two processes required for protein turnover during the repair of photoinhibited photosystem II reaction centers.  相似文献   
22.
A V Vener  J Loeb 《FEBS letters》1992,303(2-3):261-264
Zinc cations at concentrations of 0.2 mM and greater catalyzed specific phosphorylation, by ATP, of two membrane-associated proteins from rat hippocampus. These proteins, corresponding to molecular weights of 60 and 49 kDa, were phosphorylated primarily at tyrosine residues. The 60-kDa protein was identified as p60c-src by immunoprecipitation using two different p60src-specific monoclonal antibodies. The 49-kDa protein co-immunoprecipitated with p60c-src. Cyanogen bromide cleavage of p60c-src and the 49-kDa protein phosphorylated in the presence of Zn2+ gave different patterns of phosphopeptides. It is suggested that tyrosine phosphorylation of p60c-src and the p60c-src-associated 49-kDa protein may be a way of zinc participation in hippocampal neurotransmission.  相似文献   
23.
24.
Lead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream. The photochemical efficiency of PSII, measured as an Fv/Fm ratio, in the maize leaves treated with Pb was only 10% lower than in control leaves. The PSII activity was not affected by Pb ions in mesophyll thylakoids, whereas in bundle sheath it was reduced. Protein phosphorylation in mesophyll and bundle sheath thylakoids was analyzed using mass spectrometry and protein blotting before and after lead treatment. Both methods clearly demonstrated increase in phosphorylation of the PSII proteins upon treatment with Pb2+, however, the extent of D1, D2 and CP43 phosphorylation in the mesophyll chloroplasts was clearly higher than in bundle sheath cells. We found that in the presence of Pb ions there was no detectable dephosphorylation of the strongly phosphorylated D1 and PsbH proteins of PSII complex in darkness or under far red light. These results suggest that Pb2+ stimulates phosphorylation of PSII core proteins, which can affect stability of the PSII complexes and the rate of D1 protein degradation. Increased phosphorylation of the PSII core proteins induced by Pb ions may be a crucial protection mechanism stabilizing optimal composition of the PSII complexes under metal stress conditions. Our results show that acclimation to Pb ions was achieved in both types of maize chloroplasts in the same way. However, these processes are obviously more complex because of different metabolic status in mesophyll and bundle sheath chloroplasts.  相似文献   
25.
26.
We show that the thylakoid membrane phosphoprotein TMP14 is a novel subunit of plant photosystem I (PSI). Blue native/SDS-PAGE and sucrose gradient fractionation demonstrated the association of the protein exclusively with PSI. We designate the protein PSI-P. The presence of PSI-P subunit in Arabidopsis mutants lacking other PSI subunits was analyzed and suggested a location in the proximity of PSI-L, -H and -O subunits. The PSI-P protein was not differentially phosphorylated in state 1 and state 2.  相似文献   
27.
A V Vener 《Bio Systems》1990,24(1):53-59
Spontaneity and diversity are the intrinsic properties of protein phosphorylation. They provide living systems with opportunities for polyvariant transformation of expressed genetic information and alteration of their energy metabolism under change of living conditions. Thus, protein phosphorylation can be regarded as a molecular mechanism for adaptation and selection of mutant proteins useful for the cell, i.e. a motive force for adaptive evolution.  相似文献   
28.
Combination of reversed genetics with analyses of in vivo protein phosphorylation in Arabidopsis thaliana revealed that STN8 protein kinase is specific in phosphorylation of N-terminal threonine residues in D1, D2, and CP43 proteins, and Thr-4 in the PsbH protein of photosystem II. Phosphorylation of D1, D2, and CP43 in the light-exposed leaves of two Arabidopsis lines with T-DNA insertions in the stn8 gene was found significantly reduced in the assays with anti-phosphothreonine antibodies. Protein phosphorylation in each of the mutants was quantified comparatively to the wild type by mass spectrometric analyses of phosphopeptides released from the photosynthetic membranes and differentially labeled with stable isotopes. The lack of STN8 caused 50-60% reduction in D1 and D2 phosphorylation, but did not change the phosphorylation level of two peptides that could correspond to light-harvesting proteins encoded by seven different genes in Arabidopsis. Phosphorylation of the PsbH protein at Thr-4 was completely abolished in the plants lacking STN8. Phosphorylation of Thr-4 in the wild type required both light and prior phosphorylation at Thr-2, indicating that STN8 is a light-activated kinase that phosphorylates Thr-4 only after another kinase phosphorylates Thr-2. Analysis of the STN8 catalytic domain suggests that selectivity of STN8 in phosphorylation of the very N-terminal residues in D1, D2, and CP43, and Thr-4 in PsbH pre-phosphorylated at Thr-2 may be explained by the long loops obstructing entrance into the kinase active site and seven additional basic residues in the vicinity of the catalytic site, as compared with the homologous STN7 kinase responsible for phosphorylation of light-harvesting proteins.  相似文献   
29.

Background

Abnormal blood glucose (BG) concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM) devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities.

Aim

To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care.

Methods

CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit.

Results

The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10?mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI) captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1) A stable, low variability patient which shows no unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic event (classified as unusual), and, 3) A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual).

Conclusions

This study has produced a stochastic model and classification method capable of highlighting unusual CGM behaviour. This method has the potential to classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or sensor noise, and to help identify possible sensor degradation. Colour coded CGM traces convey the information quickly and efficiently, while remaining computationally light enough to be used retrospectively or in real-time.  相似文献   
30.
The use of mass spectrometry to characterize the phosphorylome, i.e. the constituents of the proteome that become phosphorylated, was demonstrated using the reversible phosphorylation of chloroplast thylakoid proteins as an example. From the analysis of tryptic peptides released from the surface of Arabidopsis thylakoids, the principal phosphoproteins were identified by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. These studies revealed that the D1, D2, and CP43 proteins of the photosystem II core are phosphorylated at their N-terminal threonines (Thr), the peripheral PsbH protein is phosphorylated at Thr-2, and the mature light-harvesting polypeptides LCHII are phosphorylated at Thr-3. In addition, a doubly phosphorylated form of PsbH modified at both Thr-2 and Thr-4 was detected. By comparing the levels of phospho- and nonphosphopeptides, the in vivo phosphorylation states of these proteins were analyzed under different physiological conditions. None of these thylakoid proteins were completely phosphorylated in the steady state conditions of continuous light or completely dephosphorylated after a long dark adaptation. However, rapid reversible hyperphosphorylation of PsbH at Thr-4 in response to growth in light/dark transitions and a pronounced specific dephosphorylation of the D1, D2, and CP43 proteins during heat shock was detected. Collectively, our data indicate that changes in the phosphorylation of photosynthetic proteins are more rapid during heat stress than during normal light/dark transitions. These mass spectrometry methods offer a new approach to assess the stoichiometry of in vivo protein phosphorylation in complex samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号