首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
An optimization of the transport system in a cell has been considered from the viewpoint of the operations research. Algorithms for an optimization of the transport system of a cell in terms of both the efficiency and a weak sensitivity of a cell to environmental changes have been proposed. The switching of various systems of transport is considered as the mechanism of weak sensitivity of a cell to changes in environment. The use of the algorithms for an optimization of a cardiac cell has been considered by way of example. We received theoretically for a cell of a cardiac muscle that at the increase of potassium concentration in the environment switching of transport systems for this ion takes place. This conclusion qualitatively coincides with experiments. The problem of synthesizing an optimal system in an artificial cell has been stated.  相似文献   
12.
13.

Background

Abnormal blood glucose (BG) concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM) devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities.

Aim

To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care.

Methods

CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit.

Results

The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10?mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI) captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1) A stable, low variability patient which shows no unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic event (classified as unusual), and, 3) A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual).

Conclusions

This study has produced a stochastic model and classification method capable of highlighting unusual CGM behaviour. This method has the potential to classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or sensor noise, and to help identify possible sensor degradation. Colour coded CGM traces convey the information quickly and efficiently, while remaining computationally light enough to be used retrospectively or in real-time.  相似文献   
14.
A model of the active transport of ions in a cardiac muscle cell, which takes into account the active transport of Na+, K+, Ca2+, Mg2+, HCO3 and Cl ions, has been constructed. The model allows independent calculations of the resting potential at the biomembrane and concentrations of basic ions (sodium, potassium, chlorine, magnesium and calcium) in a cell. For the analysis of transport processes in cardiac cell hierarchical algorithm “one ion-one transport system” was offered. The dependence of the resting potential on concentrations of the ions outside a cell has been established. It was shown, that ions of calcium and magnesium, despite their rather small concentration, play an essential role in maintenance of resting potential in cardiac cell. The calculated internal concentrations of ions are in good agreement with the corresponding experimental values.  相似文献   
15.
A closed model of the active transport was constructed taking into account ATP-dependent opening and closing of barriers to ions and the relationship between the membrane potential and the work of ionic pumps under the condition of electroneutrality inside the cell. The internal consistency of the model was verified by the fulfillment of Onsager's reciprocity relation. It was demonstrated that at the limit of large energy barriers the operation of the system of the active transport is equivalent to the "turning segment" model, which was proposed by the authors earlier. Values of the resting potential and the intracellular concentration of ions were obtained for different types of cells. These results were in qualitative agreement with relevant experimental data.  相似文献   
16.
17.
A mathematical model of the transport of basic ions (K+, Na+, Cl) across the hepatocyte membrane has been created using the previously constructed models of active ion transport in biomembranes. The dependence of the resting potential on extracellular ion concentration has been established. Using the model, it is possible to independently calculate the resting potential at the biomembrane and the concentrations of sodium, potassium, and chlorine ions in the cell. The calculated internal concentrations of the ions are in good agreement with the corresponding experimental values.  相似文献   
18.

Background

The electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods – L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data.

Methods

Using the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained.

Results

The cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each – fearful face, neutral face, control objects).

Conclusions

The GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.
  相似文献   
19.
The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.  相似文献   
20.
Melkikh AV 《Biofizika》2002,47(6):1134-1139
The process of selecting new information by the organism ("learning") was studied. To take a decision, key patterns have to be set a priori, and so knowledge accumulation (learning) based on pattern recognition is impossible. It was shown that the only physical process that, takes place during the emergence of an external signal is the triggering of a priori programmes. An equivalent biophysical scheme of pattern recognition and taking the decisions by the organism was developed in which a signal received by the receptor leads to the synthesis of one of possible catalysts. The catalyst starts up the corresponding thermodynamic process. The information contained in the organism does not change during this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号