首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   11篇
  83篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有83条查询结果,搜索用时 49 毫秒
41.
The soil‐borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1‐like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine‐rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease‐controlling T3E, and sheds light on the co‐evolutionary arms race between the bacterium and its hosts.  相似文献   
42.
Stereochemical analysis of signal peptide interaction with E. coli membrane phospholipids revealed the structural complementarity of N-terminus of signal peptide alpha-helix and acid phospholipids. The formation of their complex leads to neutralization of charges and decrease in hydrophilicity of both components, and promotes insertion of peptide and phospholipid into the membrane, not separately but as a complex. Interaction of acid phospholipids with the E. coli alkaline phosphatase (AP) signal peptide was thoroughly analyzed, and it was shown that in this case a complex of signal peptide alpha-helix with phosphatidylglycerol is inserted into the membrane with the lowest energy expense. On the basis of the results of stereochemical analysis and the available experimental data, a molecular mechanism of protein translocation initiation across the membrane has been proposed, in which the key events are the formation of the complex "signal peptide alpha-helix-acid phospholipid", the coupled insertion of hydrophobic peptide-lipid complex into a nonpolar membrane interior and translocation across the membranes.  相似文献   
43.
Kajava AV 《FEBS letters》2000,473(2):127-131
Involucrin is a key component of the cross-linked envelope of terminally differentiated keratinocytes. The human molecule largely consists of 10 residue repeats and forms a thin 460 A long rod. Summarized experimental data and a detailed stereochemical analysis made with computer modeling resulted in a structural model for the involucrin molecule. The suggested structure is a left-handed alpha-helical solenoid built of a tandem array of helix-turn-helix folds. The structure enables us to explain the whole set of experimental data and residue conservations within the repeats. It is ideally suited to serve as a scaffold for cell envelope assembly and proposes a possible mode of the intermolecular interactions of involucrin during cell cornification.  相似文献   
44.
High-affinity, intrapore binding of Ca(2+) over competing ions is the essential feature in the ion selectivity mechanism of voltage-gated Ca(2+) channels. At the same time, several million Ca(2+) ions can travel each second through the pore of a single open Ca(2+) channel. How such high Ca(2+) flux is achieved in the face of tight Ca(2+) binding is a current area of inquiry, particularly from a structural point of view. The ion selectivity locus comprises four glutamate residues within the channel's pore. These glutamates make unequal contributions to Ca(2+) binding, underscoring a role for neighboring residues in pore function. By comparing two Ca(2+) channels (the L-type alpha(1C), and the non-L-type alpha(1A)) that differ in their pore properties but only differ at a single amino acid position near the selectivity locus, we have identified the amino-terminal neighbor of the glutamate residue in motif III as a determinant of pore function. This position is more important in the function of alpha(1C) channels than in alpha(1A) channels. For a systematic series of mutations at this pore position in alpha(1C), both unitary Ba(2+) conductance and Cd(2+) block of Ba(2+) current varied with residue volume. Pore mutations designed to make alpha(1C) more like alpha(1A) and vice versa revealed that relative selectivity for Ba(2+) over K(+) depended almost solely on pore sequence and not channel type. Analysis of thermodynamic mutant cycles indicates that the motif III neighbor normally interacts in a cooperative fashion with the locus, molding the functional behavior of the pore.  相似文献   
45.
Recent studies have shown that Sup35p prion fibrils probably have a parallel in-register β-structure. However, the part(s) of the N-domain critical for fibril formation and maintenance of the [PSI+] phenotype remains unclear. Here we designed a set of five SUP35 mutant alleles (sup35KK) with lysine substitutions in each of five N-domain repeats, and investigated their effect on infectivity and ability of corresponding proteins to aggregate and coaggregate with wild type Sup35p in the [PSI+] strain. Alleles sup35-M1 (Y46K/Q47K) and sup35-M2 (Q61K/Q62K) led to prion loss, whereas sup35-M3 (Q70K/Q71K), sup35-M4 (Q80K/Q81K), and sup35-M5 (Q89K/Q90K) were able to maintain the [PSI+] prion. This suggests that the critical part of the parallel in-register β-structure for the studied [PSI+] prion variant lies in the first 63–69 residues. Our study also reveals an unexpected interplay between the wild type Sup35p and proteins expressed from the sup35KK alleles during prionization. Both Sup35-M1p and Sup35-M2p coaggregated with Sup35p, but only sup35-M2 led to prion loss in a dominant manner. We suggest that in the fibrils, Sup35p can bind to Sup35-M1p in the same conformation, whereas Sup35-M2p only allowed the Sup35p conformation that leads to the non-heritable fold. Mutations sup35-M4 and sup35-M5 influence the structure of the prion forming region to a lesser extent, and can lead to the formation of new prion variants.  相似文献   
46.
There has been an increased interest in computational methods for amyloid and (or) aggregate prediction, due to the prevalence of these aggregates in numerous diseases and their recently discovered functional importance. To evaluate these methods, several datasets have been compiled. Typically, aggregation‐prone regions of proteins, which form aggregates or amyloids in vivo, are more than 15 residues long and intrinsically disordered. However, the number of such experimentally established amyloid forming and non‐forming sequences are limited, not exceeding one hundred entries in existing databases. In this work, we parsed all available NMR‐resolved protein structures from the PDB and assembled a new, sevenfold larger, dataset of unfolded sequences, soluble at high concentrations. We proposed to use these sequences as a negative set for evaluating methods for predicting aggregation in vivo. We also present the results of benchmarking cutting edge tools for the prediction of aggregation versus solubility propensity.  相似文献   
47.
Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein–protein and protein–ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as “hub molecules” for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side‐chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein–ligand interactions by analysis of protein surfaces . Proteins 2015; 83:1654–1664. © 2015 Wiley Periodicals, Inc.  相似文献   
48.
Tandem repeats (TRs) represent one of the most prevalent features of genomic sequences. Due to their abundance and functional significance, a plethora of detection tools has been devised over the last two decades. Despite the longstanding interest, TR detection is still not resolved. Our large-scale tests reveal that current detectors produce different, often nonoverlapping inferences, reflecting characteristics of the underlying algorithms rather than the true distribution of TRs in genomic data. Our simulations show that the power of detecting TRs depends on the degree of their divergence, and repeat characteristics such as the length of the minimal repeat unit and their number in tandem. To reconcile the diverse predictions of current algorithms, we propose and evaluate several statistical criteria for measuring the quality of predicted repeat units. In particular, we propose a model-based phylogenetic classifier, entailing a maximum-likelihood estimation of the repeat divergence. Applied in conjunction with the state of the art detectors, our statistical classification scheme for inferred repeats allows to filter out false-positive predictions. Since different algorithms appear to specialize at predicting TRs with certain properties, we advise applying multiple detectors with subsequent filtering to obtain the most complete set of genuine repeats.  相似文献   
49.
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer''s clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer''s clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.  相似文献   
50.
During retroviral particle formation, the capsid precursors (Gag) associate with the cell membrane via their matrix (MA) domain to form viral assembling particles. After budding, Gag and its proteolytically matured MA, form a shell in the released immature and mature particles, respectively. Although the arrangement of Gag domains in vitro and their radial organisation in retroviral particles have been extensively studied, little is known concerning Gag inter-subunit interactions in authentic retroviruses. We report that human T-cell leukemia virus type 1 Gag homodimerises in the cell via a disulphide bonding at cysteine 61 in the MA domain. Most Gags are homodimeric after budding and MAs are also dimeric in mature authentic virions. Molecular modelling of the MA domain indicates that non-covalent interactions at the MA dimer interface may also be important for Gag (and MA) dimerisation. In addition, all amino acids previously reported to be involved in MA-transmembrane (TM) interactions are located on the MA face opposite to the dimer interface. The model reveals that homodimerisation is compatible with a hexameric network of Gag and MA dimers that look like the hexameric networks observed for other retroviruses. These data, together with previous studies, lead us to propose a supra-molecular arrangement model in which the transmembrane glycoproteins of the virion envelope are anchored in a hexameric cage hole formed by the MA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号