首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   11篇
  333篇
  2013年   11篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   10篇
  1983年   4篇
  1982年   3篇
  1980年   5篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1975年   11篇
  1974年   3篇
  1973年   8篇
  1972年   12篇
  1971年   12篇
  1970年   4篇
  1969年   3篇
  1968年   5篇
  1965年   4篇
  1958年   9篇
  1957年   12篇
  1956年   10篇
  1955年   6篇
  1953年   11篇
  1952年   8篇
  1951年   5篇
  1950年   3篇
  1948年   3篇
  1909年   2篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
251.
252.
Comparison of Trunk and Branch Sap Flow with Canopy Transpiration in Pecan   总被引:9,自引:0,他引:9  
Trunk and branch sap flow were compared with canopy transpirationin a 5-year-old pecan tree (Carya illinoensis ‘Wichita’).Total trunk sap flow, measured by a heat balance trunk flowgauge, was 122.8 kg over a 24 h period, corresponding closelyto the 113.4 kg of canopy transpiration measured by a largeprecision weighing lysimeter. Branches, less than half the diameterof the main trunk, had a total sap flow an order of magnitudeless than the total flow in the trunk. Sap flow in a branchwith a northern exposure was 41% less than that with a southernexposure. When sap flow was normalized per unit tree or branchleaf area, peak sap flow in the south branch matched that inthe main trunk. Tree transpiration and the sap flow in trunkand branches began concurrently, indicating little dynamic waterstorage in the trunk above the gauge. The hydraulic conductanceof the entire tree was 8 to 14 x 10–14 m s–1 Pa–1,similar to values found for a number of woody and herbaceousspecies. Key words: Sap flow, Carya illinoensis, transpiration, lysimeter, trunk flow gauge  相似文献   
253.
1. In contrast to extensive studies of zooplankton in lakes, the role of microcrustaceans in wetlands is not well studied. In this study, spatial and temporal patterns of microcrustacean assemblage structure and secondary production were quantified over a 2-year period in a southeastern U.S.A. wetland.
2. Thirty-two species, including 19 cladocerans, 10 copepods and three ostracods, generated different temporal patterns of density and production between vegetated ( Nymphaea ) and non-vegetated (open-water) zones reflecting species-specific differences in life histories.
3. Summer assemblages were dominated by small, planktonic filter-feeders, typified by high annual production/biomass ( P / B ) and daily production. In contrast, winter assemblages were dominated by larger, epibenthic detritivores with low P / B and high biomass. Seasonal shifts in the relative importance of planktonic species in the warmer months to benthic and epiphytic species in the cooler months suggest that energy flow pathways through microcrustaceans may vary seasonally.
4. Total annual production was higher during both years in the Nymphaea zone (13.0 g and 13.6 g DM m−2 year−1) than the open-water (8.2 and 6.3 g DM m−2 year−1), and was similar between years for the entire wetland pond (12.3 and 12.2 g DM m−2 year−1).
5. Although wetland ecosystems have been the subject of considerable ecological research in the past 20 years, our study is one of the few to demonstrate a highly diverse and relatively productive microcrustacean assemblage. Such comprehensive production studies can be used to quantify the ecological importance of microcrustaceans in freshwater wetland ecosystems.  相似文献   
254.
3′,5′-cAMP stimulates flowering of Lemna gibba G3 under inductive long-day conditions and enhances flower onset. 3′,5′-cAMP has no influence on frond production. 2′,3′-cGMP increases markedly the proliferation of fronds and inhibits flowering. The effect of 2′,3′-cGMP on frond multiplication is photoperiodically independent; under short-day conditions 2′,3′-cGMP replaces in fact the requirement for inductive long-day conditions. 2′,3′-cGMP increases the total amount of DNA per frond. This accumulation of DNA precedes by 2–3 days the 2′,3′-cGMP related increase in frond formation. The results are discussed in the light of the hypothesis that the active cyclic mononucleotides exert their effects on multiplication and flowering at the level of DNA.  相似文献   
255.
The ontogeny of peroxidase activity and isoenzyme pattern wasinvestigated in the stem of dwarf pea plants. Peroxidase activityper unit soluble protein was a given internode is highest inthe youngest growth stage, drops during elongation, remainsconstant upon cessation of growth, and increase at senescence.The lower the internode on the stem the higher is its peroxidaseactivity. These developmental differences are already apparentat the youngest growth stage of the internodes adn increaseduring elongation. Several anodic and five cathodic isoperoxidasesare apparent after starch gel electrophoresis. This patternis constant for all internodes at all growth stages, but therelative importance of particular isoenzymes changes with time. Gibberellic acid (GA3) treatment causes greatly elongated internodes,decreased soluble protein, and inhibition of the rise in peroxidaseactivity within 4–8 h. Application of GA3 to young internodesleads to a persistent depression in peroxidase activity, whiletreated older internodes suffer only a temporary depression.GA3 causes no qualitative changes in the isoenzyme pattern butproduces some quantitative alterations in internodes in whichits influence on peroxidase activity is persistent. Decapitation of untreated and GA3-treated dwarfs has littleinfluence on internode elongation, causes an increase in peroxidaseactivity, especially in the upper internodes, and alters therelative activity of particular isoenzymes. By contrast, decapitationinhibits elongation of young internodes in genetically tallpea plants.  相似文献   
256.
Climate change and disease: bleaching of a chemically defended seaweed   总被引:2,自引:0,他引:2  
Disease is emerging as an important impact of global climate change, due to the effects of environmental change on host organisms and their pathogens. Climate‐mediated disease can have severe consequences in natural systems, particularly when ecosystem engineers, such as habitat‐formers or top predators are affected, as any impacts can cascade throughout entire food webs. In temperate marine ecosystems, seaweeds are the dominant habitat‐formers on rocky reefs. We investigated a putative bleaching disease affecting Delisea pulchra, a chemically defended seaweed that occurs within a global warming ‘hot‐spot’ and assessed how patterns of this phenomenon were influenced by ocean temperature, solar radiation, algal chemical defences and microbial pathogens. Warmer waters were consistently and positively correlated with higher frequencies of bleaching in seaweed populations, but patterns of bleaching were not consistently influenced by light levels. Bleached thalli had low levels of antibacterial chemical defences relative to healthy conspecifics and this was observed across entire thalli of partially bleached algae. Microbial communities associated with bleached algae were distinct from those on the surfaces of healthy seaweeds. Direct testing of the importance of algal chemical defences, done here for the first time in the field, demonstrated that they protected the seaweed from bleaching. Treatment of algal thalli with antibiotics reduced the severity of bleaching in experimental algae, especially at high water temperatures. These results indicate that bleaching in D. pulchra is the result of temperature‐mediated bacterial infections and highlight the potential for warming to influence disease dynamics by stressing hosts. Understanding the complex ways in which global change may affect important organisms such as habitat‐forming seaweeds, is essential for the management and conservation of natural resources.  相似文献   
257.
There is increasing interest among evolutionary biologists in developmental plasticity. Previously ignored by many as being irrelevant to evolution because a plastic response to an environmental change is not inherited, the current, more positive, view of plasticity focuses on the fact that, although any individual plastic response is nonheritable, the overall pattern of developmental response to environmental variation (i.e. the developmental reaction norm) is heritable and may vary among genotypes within a population. Characters subject to plastic variation, like those that are entirely genetically determined, may vary in continuous, meristic or discrete ways. Of these, the least work has been carried out on meristic variation. In the present study, we contribute to the rectification of this imbalance by examining the plastic response of the number of tentacles in the lophophore of a species of bryozoan, Membranipora membranacea, to three environmental variables: temperature, salinity and food concentration. Because the approach taken was an experimental one, unlike the majority of studies of bryozoan tentacles to date, we are able to make statements about the causality of variation in tentacle number. The main conclusions of the present study are: (1) that plastic responses occur to all three environmental variables; (2) that these are part of a more generalized plastic response in the overall development of the zooids rather than being lophophore‐specific; and (3) that the issue of whether the relevant developmental reaction norms are adaptive or not is an open (and interesting) question. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 541–551.  相似文献   
258.
259.
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号