首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   18篇
  399篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2015年   18篇
  2014年   16篇
  2013年   15篇
  2012年   34篇
  2011年   24篇
  2010年   22篇
  2009年   14篇
  2008年   25篇
  2007年   27篇
  2006年   20篇
  2005年   18篇
  2004年   17篇
  2003年   13篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1972年   1篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
排序方式: 共有399条查询结果,搜索用时 28 毫秒
61.
Plant development and physiology are widely determined by the polar transport of the signaling molecule auxin. This process is controlled on the cellular efflux level catalyzed by members of the PIN (pin-formed) and ABCB (ATP-binding cassette protein subfamily B)/P-glycoprotein family that can function independently and coordinately. In this study, we have identified by means of chemical genomics a novel auxin transport inhibitor (ATI), BUM (2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid), that efficiently blocks auxin-regulated plant physiology and development. In many respects, BUM resembles the functionality of the diagnostic ATI, 1-N-naphtylphtalamic acid (NPA), but it has an IC50 value that is roughly a factor 30 lower. Physiological analysis and binding assays identified ABCBs, primarily ABCB1, as key targets of BUM and NPA, whereas PIN proteins are apparently not directly affected. BUM is complementary to NPA by having distinct ABCB target spectra and impacts on basipetal polar auxin transport in the shoot and root. In comparison with the recently identified ATI, gravacin, it lacks interference with ABCB membrane trafficking. Individual modes or targets of action compared with NPA are reflected by apically shifted root influx maxima that might be the result of altered BUM binding preferences or affinities to the ABCB nucleotide binding folds. This qualifies BUM as a valuable tool for auxin research, allowing differentiation between ABCB- and PIN-mediated efflux systems. Besides its obvious application as a powerful weed herbicide, BUM is a bona fide human ABCB inhibitor with the potential to restrict multidrug resistance during chemotherapy.  相似文献   
62.
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.  相似文献   
63.
Abstract Contamination of food with mycotoxins is a major health problem. Impairment of several immune functions has been repeatedly reported in animals fed with contaminated fodder. Since the liver is a major target of toxicity by aflatoxins, the effects of aflatoxins B1, and its hepatic metabolites Q1 and M1 on Kupffer cell function was investigated in vitro. Aflatoxin B1 induced significant ( P < 0.05) inhibition of phagocytosis, intracellular killing of Candida albicans , and intrinsic anti-Herpes virus activity at concentrations as low as 0.01 pg ml−1. Aflatoxin Q1 and M1 had similar effects on phagocytosis and microbicidal activity, but were two- to ten-fold less potent than aflatoxin B1.  相似文献   
64.
The “mitochondrial cascade hypothesis” could explain many of the biochemical, genetic and pathological features of sporadic Alzheimer’s disease (AD). Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress and accumulation of amyloid β, which in a vicious cycle reinforces mtDNA damage and oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, and despite the cognitive impairment frequently reported in patients with mtDNA mutation, no causative mutation in the mtDNA have been linked to AD. Indeed, results of studies on the role of mtDNA polymorphisms or haplogroups in AD are controversial. In this minireview, we summarize the actual knowledge about the involvement of mtDNA in AD pathology.  相似文献   
65.
This study was designed to establish the mechanism responsible for the increased apolipoprotein (apo) A-II levels caused by the cholesteryl ester transfer protein inhibitor torcetrapib. Nineteen subjects with low HDL cholesterol (<40 mg/dl), nine of whom were also treated with 20 mg of atorvastatin daily, received placebo for 4 weeks, followed by 120 mg of torcetrapib daily for the next 4 weeks. Six subjects in the nonatorvastatin cohort participated in a third phase, in which they received 120 mg of torcetrapib twice daily for 4 weeks. At the end of each phase, subjects underwent a primed-constant infusion of [5,5,5-2H3]l-leucine to determine the kinetics of HDL apoA-II. Relative to placebo, torcetrapib significantly increased apoA-II concentrations by reducing HDL apoA-II catabolism in the atorvastatin (−9.4%, P < 0.003) and nonatorvastatin once- (−9.9%, P = 0.02) and twice- (−13.2%, P = 0.02) daily cohorts. Torcetrapib significantly increased the amount of apoA-II in the α-2-migrating subpopulation of HDL when given as monotherapy (27%, P < 0.02; 57%, P < 0.003) or on a background of atorvastatin (28%, P < 0.01). In contrast, torcetrapib reduced concentrations of apoA-II in α-3-migrating HDL, with mean reductions of −14% (P = 0.23), −18% (P < 0.02), and −18% (P < 0.01) noted during the atorvastatin and nonatorvastatin 120 mg once- and twice-daily phases, respectively. Our findings indicate that CETP inhibition increases plasma concentrations of apoA-II by delaying HDL apoA-II catabolism and significantly alters the remodeling of apoA-II-containing HDL subpopulations.  相似文献   
66.
This year celebrates the 200th aniversary of the birth of Charles Darwin, best known for his theory of evolution summarized in On the Origin of Species. Less well known is that, in the second half of his life, Darwin’s major scientific focus turned towards plants. He wrote several books on plants, the next-to-last of which, The Power of Movement of Plants, published together with his son Francis, opened plants to a new view. Here we amplify the final sentence of this book in which the Darwins proposed that: “It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.” This sentence conveys two important messages: first, that the root apex may be considered to be a ‘brain-like’ organ endowed with a sensitivity which controls its navigation through soil; second, that the root apex represents the anterior end of the plant body. In this article, we discuss both these statements.Key words: auxin, cognition, plant neurobiology, plant tropisms, roots, sensory biology, signaling  相似文献   
67.
Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ~1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs.  相似文献   
68.
The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 1033 photons s−1 mm−2 mrad−2 per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s−1) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging.  相似文献   
69.
Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta‐analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy‐forming algae and/or their replacement by mat‐forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy‐forming algae. Conversely, the growth or survival of mat‐forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy‐forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat‐forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat‐forming algae, particularly in enclosed bays or estuaries because of the higher prevalence of synergistic interactions between nutrient enrichment with other local and global stressors, and as such it should be prioritized.  相似文献   
70.
In this study, the MCF-7 breast cancer cells that lack caspase-3 were transfected with a wild type (WT) or mutant caspase-3 cDNA. Expression of the WT, but not of the mutant, caspase-3 was associated with increased caspase activity and susceptibility to staurosporine (STS)-induced apoptosis. Both derivatives displayed inhibition of cell growth compared with vector control cells. Growth inhibition was associated with increased expression of the cyclin dependent kinase (CDK) inhibitor p27Kip1 in the WT, but not in the mutant caspase-3 expressing cells. Cyclin D1 expression level was not affected by caspase-3 expression. Phosphorylation of the Akt protein was decreased in both WT and mutant caspase transfected cells, although Akt expression level remained unchanged. These results suggest that caspase-3 might have biological functions independent of its protease activity and that its loss might contribute to tumor development by increasing the growth potential of cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号