首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   5篇
  2021年   3篇
  2012年   4篇
  2010年   4篇
  2009年   2篇
  2005年   2篇
  2004年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   5篇
  1969年   1篇
  1968年   2篇
  1959年   3篇
  1958年   5篇
  1957年   4篇
  1956年   3篇
  1955年   1篇
  1953年   5篇
  1952年   9篇
  1951年   5篇
  1950年   4篇
  1949年   2篇
  1948年   1篇
  1947年   1篇
  1945年   1篇
  1941年   1篇
  1934年   1篇
排序方式: 共有142条查询结果,搜索用时 78 毫秒
101.
ABSTRACT. Thirty one Giardia isolates, established from six species of hoofed livestock by axenic culture or growth in suckling mice, were compared genetically by analysis of DNA amplified from loci encoding variant surface proteins or the enzyme glutamate dehydrogenase and by allozyme analysis. The isolates were heterogeneous, but all showed affinity with genetic Assemblage A-one of two major assemblages defined previously by analysis of Giardia from humans. Three distinct genotypes were evident. Ten isolates (eight axenic and two established in suckling mice) from an alpaca, pig, horse, cattle and sheep were indistinguishable from human-derived G. intestinalis belonging to a previously designated genetic group (Group I). This genotype seems to have broad host specificity, including a zoonotic potential for humans. Five isolates (two axenic and three established in suckling mice) from an alpaca, a horse and sheep had close affinity with human-derived Group I and Group I1 G. inresrinalis genotypes. The other 16 isolates (comprising both axenic and suckling mouse-propagated cultures derived from cattle, sheep, alpaca, a goat and pigs in Australia and Europe) differed from all other Giardia with "duodenalis" morphology that have been examined by these methods and they segregated as a highly distinct sublineage (referred to herein as 'Novel livestock') within genetic Assemblage A. The predominance of 'Novel livestock' genotypes in the test panel and their apparent exclusive association with artiodactyl hosts indicates that they may be confined to this group of mammals. Assemblage B genotypes, which are prevalent in humans and some other animal species, were not detected.  相似文献   
102.
The tissue and developmental specificities of the three Drosophila isoactins, originally identified in primary myogenic cultures and in the permanent Schneider L-2 cell line, have been investigated. Of these three isoactins (I, II, and III), actins I and II are stable and actin III is unstable. Two-dimensional polyacrylamide gel electrophoretic analyses of total cellular extracts after 1-h [(35)S]methionine pulses were performed on a large variety of embryonic, larval, and adult muscle and nonmuscle tissues. The results suggest that isoactins II and III are generalized cellular actins found in all drosophila cell types. Actin I, on the other hand, is muscle-associated and is found exclusively in supercontractile muscle (such as larval body wall and larval and adult viscera) including primary myogenic cell cultures. Although actin I synthesis is not detectable during very early embryogenesis, it is detectable by 25 h and actin I is a major stable actin in all larval muscle tissues. Actin I is synthesized in reduced amounts relative to the other actins in late third instar larvae but is again a major product of actin synthesis in the adult abdomen. A stable actin species with the same pI as actin III has been identified in the adult thorax and appears to be unique to flight muscle tissue. This new stable form of thoracic actin may be the result of a stabilization of the actin III found in other tissues or may be an entirely separate gene product.  相似文献   
103.
The availability of molecular phylogenies has greatly accelerated our understanding of evolutionary innovations in the context of their origin and rate of evolution. Here, we assess the evolution of reproductive mode, developmental rate and body size in a group of squamate reptiles: the chameleons. Oviparity is ancestral and viviparity has evolved at least twice: Bradypodion and members of the Trioceros bitaeniatus clade are viviparous. Viviparous species are medium‐sized as a result of convergence from either small‐sized ancestors or large‐sized ancestors, respectively, but do not differ from oviparous species in clutch size, hatchling size or the trade‐off between clutch and hatchling size. Basal chameleons (Brookesia, Rhampholeon and Rieppeleon) are small‐sized and have developmental rates comparable with those of other lizards. Derived chameleons (Calumma, Chamaeleo, Trioceros and Furcifer) are mostly large‐sized and all have relatively slow developmental rates. Several clades of derived chameleons also exhibit developmental arrest (embryonic diapause or embryonic diapause plus cold torpor) and incubation periods extend to 6–10 months or more. Developmental arrest is associated with dry, highly seasonal climates in which the period favourable for oviposition and hatching is short. Long incubation periods thus ensure that hatching occurs during the favourable season following egg laying. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 656–668.  相似文献   
104.
105.
106.
107.
108.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号