全文获取类型
收费全文 | 108篇 |
免费 | 8篇 |
国内免费 | 3篇 |
专业分类
119篇 |
出版年
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 2篇 |
2013年 | 12篇 |
2012年 | 5篇 |
2011年 | 11篇 |
2010年 | 15篇 |
2009年 | 8篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 3篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 2篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有119条查询结果,搜索用时 31 毫秒
61.
Borneo has experienced heavy deforestation and forest degradation during the past two decades. In this study the Moderate Resolution Imaging Spectroradiometer was used to monitor land cover change in Borneo between 2002 and 2005 in order to assess the current extent of the forest cover, the deforestation rate and the role of fire. Using Landsat and ground observation for validation it was possible to discriminate 11 land cover classes. In 2002 57% of the land surface of Borneo was covered with forest of which 74% was dipterocarp and more than 23% peat swamp forest. The average deforestation rate between 2002 and 2005 was 1.7% yr− 1 . The carbon-rich ecosystem of peat swamp forests showed a deforestation rate of 2.2%. Almost 98% of all deforestation occurred within a range of 5 km to the forest edge. Fire is highly correlated with land cover changes. Most fires were detected in degraded forests. Ninety-eight per cent of all forest fires were detected in the 5 km buffer zone, underlining that fire is the major driver for forest degradation and deforestation. 相似文献
62.
Symbiotic flagellates play a major role in the digestion of lignocellulose in the hindgut of lower termites. Many termite gut flagellates harbour a distinct lineage of bacterial endosymbionts, so-called Endomicrobia, which belong to the candidate phylum Termite Group 1. Using an rRNA-based approach, we investigated the phylogeny of Trichonympha , the predominant flagellates in a wide range of termite species, and of their Endomicrobia symbionts. We found that Trichonympha species constitute three well-supported clusters in the Parabasalia tree. Endomicrobia were detected only in the apical lineage (Cluster I), which comprises flagellates present in the termite families Termopsidae and Rhinotermitidae, but apparently absent in the basal lineages (Clusters II and III) consisting of flagellates from other termite families and from the wood-feeding cockroach, Cryptocercus punctulatus . The endosymbionts of Cluster I form a monophyletic group distinct from many other lineages of Endomicrobia and seem to have cospeciated with their flagellate host. The distribution pattern of the symbiotic pairs among different termite species indicates that cospeciation of flagellates and endosymbionts is not simply the result of a spatial separation of the flagellate lineages in different termite species, but that Endomicrobia are inherited among Trichonympha species by vertical transmission. We suggest extending the previously proposed candidatus name ' Endomicrobium trichonymphae ' to all Endomicrobia symbionts of Trichonympha species, and estimate that the acquisition by an ancestor of Trichonympha Cluster I must have occurred about 40–70 million years ago, long after the flagellates entered the termites. 相似文献
63.
Further progress on the phylogeny of Noctuoidea (Insecta: Lepidoptera) using an expanded gene sample 下载免费PDF全文
JEROME C. REGIER CHARLES MITTER KIM MITTER MICHAEL P. CUMMINGS ADAM L. BAZINET WINIFRED HALLWACHS DANIEL H. JANZEN ANDREAS ZWICK 《Systematic Entomology》2017,42(1):82-93
Major progress has been made recently toward resolving the phylogeny of Noctuoidea, the largest superfamily of Lepidoptera. However, numerous questions and weakly supported nodes remain. In this paper we independently check and extend the main findings of multiple recent authors by performing maximum‐likelihood analyses of 5–19 genes (6.7–18.6 kb) in 74 noctuoids representing all the families and a majority of the subfamilies. Our results strongly support the six family system of Zahiri et al., with the former Lymantriidae and Arctiidae subsumed within the huge family Erebidae, and Noctuidae restricted largely to the subfamilies with so‐called trifine hindwing venation. Our data also strongly corroborate monophyly of the set of four families with quadrifid forewing venation, to the exclusion of Notodontidae, and removal from the latter of Oenosandridae. Other among‐family relationships, however, remain unsettled. Our evidence is equivocal on the position of Oenosandridae, which are sister group to either Notodontidae alone or to all other noctuoids. Like other recent nuclear gene studies, our results also provide no strong support for relationships among the four quadrifid forewing families. In contrast, within families our analyses significantly expand the list of robustly resolved relationships, while introducing no strong conflicts with previous molecular studies. Within Notodontidae, for which we present the largest molecular taxon sample to date, we find strong evidence for polyphyly for some, or all, recent definitions of the subfamilies Thaumetopoeinae, Pygaerinae, Notodontinae and Heterocampinae. Deeper divergences are incompletely resolved but there is strong support for multiple ‘backbone’ nodes subtending most of the subfamilies studied. Within Erebidae, we find much agreement and no strong conflict with a recent previous study regarding relationships among subfamilies, and somewhat stronger support. Although many questions remain, the two studies together firmly resolve positions for over half the subfamilies. Within Noctuidae, we find no strong conflict with previous molecular studies regarding relationships among subfamilies, but much stronger resolution along the ‘backbone’ of the phylogeny. Combining information from multiple studies yields strongly resolved positions for most of the subfamilies. Finally, our results strongly suggest that the tribes Pseudeustrotiini and Prodeniini, currently assigned to the largest subfamily, Noctuinae, do not belong there. In sum, our results provide additional corroboration for the main outlines of family‐level phylogeny in Noctuoidea, and contribute toward resolving relationships within families. 相似文献
64.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m3NO3 or 1 mol m3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride 相似文献
65.
Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots 下载免费PDF全文
ANDREAS D. PEUKE ARTHUR GESSLER SUSAN TRUMBORE CAREL W. WINDT NATALIA HOMAN EDO GERKEMA HENK VAN AS 《Plant, cell & environment》2015,38(3):433-447
Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non‐invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ13C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia. 相似文献
66.
LESLIE SAMUEL ANDREAS STUMPNER GORDON ATKINS JOHN STOUT 《Physiological Entomology》2013,38(4):344-354
Syllable period (SP) selective calling song processing has been demonstrated for the prothoracic, AN2 auditory neurone that correlates very well with SP‐selective phonotaxis by female cricket Gryllus bimaculatus De Geer. Both SP‐selective processing by the AN2 and the phonotactic behaviour of the female exhibit substantial plasticity. Thus, the question remains as to whether the selective responses of the AN2 neurone and the selective behaviour of the female match in an individual female. The present study is designed to answer that question. The SP‐selective phonotactic behaviour of individual females is evaluated, followed immediately by measuring the SP‐selective responses of the same female's AN2 neurone. Very significant correlations are found between the selective responses of the AN2 neurone and the same female's selective behaviour. In 208 possible comparisons (26 females, eight behavioural and neuronal tests each), 186 resulted in matches between behaviour and neuronal processing. Dividing the SP‐selective females into two groups (one group that responded phonotactically to the shortest SP tested and a second group that did not respond to this SP) resulted in significantly more selective responses to this shortest SP by the AN2 neurone in the females that responded phonotactically to the SP than for the females who did not respond to the shortest SP. The behavioural responses by these two groups to the other SPs tested are shown to be essentially identical. 相似文献
67.
68.
MARKUS REUTER WERNER E. PILLER MATHIAS HARZHAUSER ANDREAS KROH FRED RÖGL STJEPAN ĆORIĆ 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2011,44(1):76-86
Reuter, M., Piller, W.E., Harzhauser, M., Kroh, A., Rögl, F. & ?ori?, S. 2010: The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo‐Pacific seagrass beds. Lethaia, Vol. 44, pp. 76–86. The facies of the fossiliferous Quilon Limestone in SW India is described for the first time in detail at the Padappakkara‐type locality. Facies (fossiliferous, micrite‐rich, bioturbated sediment with intercalated sand pockets) and faunal composition (epiphytic foraminifers, seagrass feeding Smaragdia gastropods, bioimmuration of celleporiform bryozoan colonies) indicate a seagrass environment. The large discoidal archaiasin foraminifer Pseudotaberina malabarica, in particular, is considered as a proxy for seagrass communities. Recent seagrasses have their centre of generic richness in the Indo‐Pacific where they cover wide areas in the tidal and shallow sub‐tidal zones. However, their geological record is only fragmentary and their palaeobiogeographic distribution has a big stratigraphical gap in the Miocene Western Indo‐Pacific region. The described nannoplankton flora and planktonic foraminifers from the Quilon Formation demonstrate that the deposition of the studied seagrass bed occurred in nannoplankton biozone NN3. This timing suggests formation during the closure of the Tethyan Seaway. The Quilon Limestone is thus an early Western Indo‐Pacific seagrass bed and an important step in reconstructing the history of seagrass communities. □Quilon Formation, Pseudotaberina malabarica, seagrass facies, Burdigalian, Indo‐Pacific. 相似文献
69.
ANDREAS SAVVIDES WIM van IEPEREN JANNEKE A. DIELEMAN LEO F. M. MARCELIS 《Plant, cell & environment》2013,36(11):1950-1960
Meristem temperature (Tmeristem) drives plant development but is hardly ever quantified. Instead, air temperature (Tair) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species‐specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem. This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species‐specific manner under moderate environments. This deviation ranged between ?2.6 and 3.8 °C in tomato and between ?4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair, as a species‐specific trait highly reliant on various environmental factors. 相似文献
70.
ANDREAS HEINEMEYER IAIN P. HARTLEY† SAM P. EVANS‡ JOSÉ A. CARREIRA DE LA FUENTE§ PHIL INESON 《Global Change Biology》2007,13(8):1786-1797
Forests play a critical role in the global carbon cycle, being considered an important and continuing carbon sink. However, the response of carbon sequestration in forests to global climate change remains a major uncertainty, with a particularly poor understanding of the origins and environmental responses of soil CO2 efflux. For example, despite their large biomass, the contribution of ectomycorrhizal (EM) fungi to forest soil CO2 efflux and responses to changes in environmental drivers has, to date, not been quantified in the field. Their activity is often simplistically included in the ‘autotrophic’ root respiration term. We set up a multiplexed continuous soil respiration measurement system in a young Lodgepole pine forest, using a mycorrhizal mesh collar design, to monitor the three main soil CO2 efflux components: root, extraradical mycorrhizal hyphal, and soil heterotrophic respiration. Mycorrhizal hyphal respiration increased during the first month after collar insertion and thereafter remained remarkably stable. During autumn the soil CO2 flux components could be divided into ∼60% soil heterotrophic, ∼25% EM hyphal, and ∼15% root fluxes. Thus the extraradical EM mycelium can contribute substantially more to soil CO2 flux than do roots. While EM hyphal respiration responded strongly to reductions in soil moisture and appeared to be highly dependent on assimilate supply, it did not responded directly to changes in soil temperature. It was mainly the soil heterotrophic flux component that caused the commonly observed exponential relationship with temperature. Our results strongly suggest that accurate modelling of soil respiration, particularly in forest ecosystems, needs to explicitly consider the mycorrhizal mycelium and its dynamic response to specific environmental factors. Moreover, we propose that in forest ecosystems the mycorrhizal CO2 flux component represents an overflow ‘CO2 tap’ through which surplus plant carbon may be returned directly to the atmosphere, thus limiting expected carbon sequestration from trees under elevated CO2. 相似文献