首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   91篇
  2023年   5篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   30篇
  2015年   50篇
  2014年   48篇
  2013年   61篇
  2012年   69篇
  2011年   56篇
  2010年   37篇
  2009年   32篇
  2008年   40篇
  2007年   49篇
  2006年   54篇
  2005年   44篇
  2004年   29篇
  2003年   31篇
  2002年   23篇
  2001年   33篇
  2000年   36篇
  1999年   25篇
  1998年   18篇
  1997年   10篇
  1996年   8篇
  1995年   11篇
  1994年   9篇
  1992年   10篇
  1991年   10篇
  1990年   11篇
  1989年   16篇
  1988年   19篇
  1987年   20篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   6篇
  1981年   7篇
  1978年   6篇
  1976年   7篇
  1973年   11篇
  1972年   6篇
  1971年   10篇
  1968年   5篇
  1967年   5篇
  1966年   5篇
  1963年   4篇
排序方式: 共有1092条查询结果,搜索用时 62 毫秒
81.
Much effort has been dedicated to the design of significantly red shifted variants of the green fluorescent protein (GFP) from Aequoria victora (av). These approaches have been based on classical engineering with the 20 canonical amino acids. We report here an expansion of these efforts by incorporation of an amino substituted variant of tryptophan into the "cyan" GFP mutant, which turned it into a "gold" variant. This variant possesses a red shift in emission unprecedented for any avFP, similar to "red" FPs, but with enhanced stability and a very low aggregation tendency. An increasing number of non-natural amino acids are available for chromophore redesign (by engineering of the genetic code) and enable new general strategies to generate novel classes of tailor-made GFP proteins.  相似文献   
82.
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.  相似文献   
83.
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.  相似文献   
84.
The human formyl peptide receptor (FPR) is N-glycosylated and activates phagocytes via G(i)-proteins. The FPR expressed with G(i)alpha(2)beta(1)gamma(2) in Sf9 insect cells exhibits high constitutive activity as assessed by strong inhibitory effects of an inverse agonist and Na(+) on basal guanosine 5(')-O-(3-thiotriphosphate) (GTPgammaS) binding. The aim of our study was to analyze the role of N-glycosylation in FPR function. Site-directed mutagenesis of extracellular Asn residues prevented FPR glycosylation but not FPR expression in Sf9 membranes. However, in terms of high-affinity agonist binding, kinetics of GTPgammaS binding, number of G(i)-proteins activated, and constitutive activity, non-glycosylated FPR was much less active than native FPR. FPR-Asn4Gln/Asn10Gln/Asn179Gln and FPR-Asn4Gln/Asn10/Gln exhibited similar defects. Our data indicate that N-glycosylation of N-terminal Asn4 and Asn10 but not of Asn179 in the second extracellular loop is essential for proper folding and, hence, function of FPR. FPR deglycosylation by bacterial glycosidases could be a mechanism by which bacteria compromise host defense.  相似文献   
85.
Green fluorescent protein (GFP) and its mutants have become valuable tools in molecular biology. GFP has been regarded as a very stable and rigid protein with the beta-barrel shielding the chromophore from the solvent. Here, we report the 15N nuclear magnetic resonance (NMR) studies on the green fluorescent protein (GFPuv) and its mutant His148Gly. 15N NMR relaxation studies of GFPuv show that most of the beta-barrel of GFP is rigid on the picosecond to nanosecond time scale. For several regions, including the first alpha-helix and beta-sheets 3, 7, 8, and 10, increased hydrogen-deuterium exchange rates suggest a substantial conformational flexibility on the microsecond to millisecond time scales. Mutation of residue 148 located in beta-sheet 7 is known to have a strong impact on the fluorescence properties of GFPs. UV absorption and fluorescence spectra in combination with 1H-15N NMR spectra indicate that the His148Gly mutation not only reduces the absorption of the anionic chromophore state but also affects the conformational stability, leading to the appearance of doubled backbone amide resonances for a number of residues. This suggests the presence of two conformations in slow exchange on the NMR time scale in this mutant.  相似文献   
86.
It is often assumed that MAPK pathways drive proliferation of normal uroepithelial (UEC) and urothelial carcinoma (TCC) cells. To check this assumption, activities and inducibilities of promoters containing serum-response elements (SRE) or AP-1 binding sites were investigated in cultured UEC and seven TCC lines. Reporter plasmids dependent on SRE or AP-1 sites were highly active in UEC, but significantly less so in TCC lines. Reporter activity in TCC lines could be induced by constitutively active MEKK4 or TPA. Accordingly, phosphorylation of the MAPK pathway components MEK, ERK, and ELK1 was most pronounced in UEC and lower in TCC lines. MAPK-dependent promoter activities and bromodeoxyuridine incorporation decreased in UEC upon withdrawal of growth factors, but less so in TCC lines, in which serum diminution increased apoptosis. Likewise, E2F-dependent promoters responded to growth factors in UEC, but were more serum-independent in the TCC lines, which lack either RB1 or p16(INK4A). MEK inhibitors inhibited BrdU incorporation in UEC more strongly than in TCC lines. Thus, proliferation of normal uroepithelial cells is indeed associated with activation of MAPK pathways. However, autonomous proliferation of TCC lines--unexpectedly--appears much less dependent on MAPK activation and may rather be promoted by defects in cell cycle regulation.  相似文献   
87.
Nuclease A (NucA) from Anabaena sp. is a non-specific endonuclease able to degrade single and double-stranded DNA and RNA. The endonucleolytic activity is inhibited by the nuclease A inhibitor (NuiA), which binds to NucA with 1:1 stoichiometry and picomolar affinity. In order to better understand the mechanism of inhibition, the solution structure of NuiA was determined by NMR methods. The fold of NuiA is an alpha-beta-alpha sandwich but standard database searches by DALI and TOP revealed no structural homologies. A visual inspection of alpha-beta-alpha folds in the CATH database revealed similarities to the PR-1-like fold (SCOP nomenclature). The similarities include the ordering of secondary structural elements, a single helix on one face of the alpha-beta-alpha sandwich, and three helices on the other face. However, a major difference is in the IV helix, which in the PR-1 fold is short and perpendicular to the I and III helices, but in NuiA is long and parallel to the I and III helices. Additionally, a strand insertion in the beta-sheet makes the NuiA beta-sheet completely antiparallel in organization. The fast time-scale motions of NuiA, characterized by enhanced flexibility of the extended loop between helices III and IV, also show similarities to P14a, which is a PR-1 fold. We propose that the purpose of the PR-1 fold is to form a stable scaffold to present this extended structure for biological interactions with other proteins. This hypothesis is supported by data that show that when NuiA is bound to NucA significant changes in chemical shift occur in the extended loop between helices III and IV.  相似文献   
88.
The human histamine H2-receptor (hH2R) couples to Gs-proteins to activate adenylyl cyclase and to Gq-proteins to activate phospholipase C, but phospholipase C activation has not consistently been observed. The aim of this study was to compare coupling of hH2R to insect and mammalian Gs- and Gq-proteins in Spodoptera frugiperda (Sf9) cells. Interaction of hH2R with mammalian G proteins was assessed with coexpressed proteins or receptor-Galpha fusion proteins that enhance coupling efficiency. hH2R efficiently coupled to insect Gs-proteins to activate adenylyl cyclase. However, hH2R poorly coupled to insect Gq-proteins as assessed by the lack of enhancement of histamine-stimulated steady-state GTP hydrolysis by regulators of G protein signaling (RGS proteins). In contrast, RGS-proteins efficiently enhanced GTP hydrolysis stimulated by the human platelet-activating factor receptor (PAFR) and the histamine H1-receptor (H1R) from man and guinea pig. The measurement of intracellular free Ca2+ concentration was not useful for studying receptor/Gq-protein coupling. hH2R also efficiently interacted with mammalian Gs-proteins, specifically with fused Gsalpha as assessed by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-sensitive high-affinity agonist binding, agonist-stimulated [35S]GTPgammaS binding and adenylyl cyclase activation. In contrast, coupling of hH2R to coexpressed and fused mammalian Gqalpha was poor. However, our inability to reconstitute efficient coupling of PAFR and H1R to mammalian Gqalpha indicated that a large portion of the expressed G protein was functionally inactive. Taken together, our data show that hH2R couples more efficiently to insect cell Gs-proteins than to insect cell Gq-proteins. Unfortunately, there are significant limitations in the usefulness of Sf9 cells for comparing the coupling of receptors to mammalian Gs- and Gq-proteins and assessing Gq-mediated activation of effector systems.  相似文献   
89.
Aberrant DNA methylation of CpG sites is among the earliest and most frequent alterations in cancer. Several studies suggest that aberrant methylation occurs in a tumour type-specific manner. However, large-scale analysis of candidate genes has so far been hampered by the lack of high throughput assays for methylation detection. We have developed the first microarray-based technique which allows genome-wide assessment of selected CpG dinucleotides as well as quantification of methylation at each site. Several hundred CpG sites were screened in 76 samples from four different human tumour types and corresponding healthy controls. Discriminative CpG dinucleotides were identified for different tissue type distinctions and used to predict the tumour class of as yet unknown samples with high accuracy using machine learning techniques. Some CpG dinucleotides correlate with progression to malignancy, whereas others are methylated in a tissue-specific manner independent of malignancy. Our results demonstrate that genome-wide analysis of methylation patterns combined with supervised and unsupervised machine learning techniques constitute a powerful novel tool to classify human cancers.  相似文献   
90.
POCUS: mining genomic sequence annotation to predict disease genes   总被引:2,自引:0,他引:2  
Here we present POCUS (prioritization of candidate genes using statistics), a novel computational approach to prioritize candidate disease genes that is based on over-representation of functional annotation between loci for the same disease. We show that POCUS can provide high (up to 81-fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with the original large sets of positional candidates. In contrast to existing methods, POCUS can also suggest counterintuitive candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号