首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   31篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   18篇
  2014年   19篇
  2013年   29篇
  2012年   24篇
  2011年   15篇
  2010年   10篇
  2009年   15篇
  2008年   13篇
  2007年   11篇
  2006年   18篇
  2005年   15篇
  2004年   9篇
  2003年   8篇
  2002年   9篇
  2001年   15篇
  2000年   13篇
  1999年   8篇
  1998年   13篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   6篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   7篇
  1978年   3篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
91.
1. The aphid Aphis fabae (Scopoli) is facultatively tended by Lasius niger (Linnaeus) ants. Previously, we found that A. fabae colonies can be made up of several clones, and that clones display significant differences in the composition of their honeydew sugars, especially in the amount of the ant attractant sugar melezitose that they produce. 2. These clonal differences could greatly impact the strength of the mutualistic interaction with ants as well as the aphids' fitness. 3. Hence, the aim of this study was to compare the fitness of different A. fabae clones that differed in their melezitose secretion, and whether or not they were tended by ants. 4. Individual fitness indices, colony growth, and alate production of single‐clone aphid colonies were analysed. 5. The results demonstrate that the fitness consequences of ant attendance critically depend on an interaction between levels of melezitose production. In particular, we show that high‐melezitose secreting clones produce fewer alates and hence might have a lower dispersal ability in the presence of ants. 6. Furthermore, these data confirm previous evidence that ant attendance is costly and results in the production of fewer apterae.  相似文献   
92.
93.
94.
Lung fibrosis is a major cause of mortality and morbidity in systemic sclerosis (SSc). However, its pathogenesis still needs to be elucidated. We examined whether the alteration of certain proteins in bronchoalveolar lavage fluid (BALF) might have a protective or a causative role in the lung fibrogenesis process. For this purpose we compared the BALF protein profile obtained from nine SSc patients with lung fibrosis (SScFib+) with that obtained from six SSc patients without pulmonary fibrosis (SScFib-) by two-dimensional gel electrophoresis (2-DE). Only spots and spot-trains that were consistently expressed in a different way in the two study groups were taken into consideration. In total, 47 spots and spot-trains, corresponding to 30 previously identified proteins in human BALF, showed no significant variation between SScFib+ patients and SScFib- patients, whereas 24 spots showed a reproducible significant variation in the two study groups. These latter spots corresponded to 11 proteins or protein fragments, including serum albumin fragments (13 spots), 5 previously recognized proteins (7 spots), and 4 proteins (3 spots) that had not been previously described in human BALF maps, namely calumenin, cytohesin-2, cystatin SN, and mitochondrial DNA topoisomerase 1 (mtDNA TOP1). Mass analysis did not determine one protein-spot. The two study groups revealed a significant difference in BALF protein composition. Whereas levels of glutathione S-transferase P (GSTP), Cu–Zn superoxide dismutase (SOD) and cystatin SN were downregulated in SScFib+ patients compared with SScFib- patients, we observed a significant upregulation of α1-acid glycoprotein, haptoglobin-α chain, calgranulin (Cal) B, cytohesin-2, calumenin, and mtDNA TOP1 in SScFib+ patients. Some of these proteins (GSTP, Cu–Zn SOD, and cystatin SN) seem to be involved in mechanisms that protect lungs against injury or inflammation, whereas others (Cal B, cytohesin-2, and calumenin) seem to be involved in mechanisms that drive lung fibrogenesis. Even if the 2-DE analysis of BALF did not provide an exhaustive identification of all BALF proteins, especially those of low molecular mass, it allows the identification of proteins that might have a role in lung fibrogenesis. Further longitudinal studies on larger cohorts of patients will be necessary to assess their usefulness as predictive markers of disease.  相似文献   
95.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   
96.

Background  

It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems.  相似文献   
97.

Background

Mucopolysaccharidosis type IIIA (MPS IIIA) is the most common of the mucopolysaccharidoses. The disease is caused by a deficiency of the lysosomal enzyme sulphamidase and results in the storage of the glycosaminoglycan (GAG), heparan sulphate. MPS IIIA is characterised by widespread storage and urinary excretion of heparan sulphate, and a progressive and eventually profound neurological course. Gene therapy is one of the few avenues of treatment that hold promise of a sustainable treatment for this disorder.

Methods

The murine sulphamidase gene cDNA was cloned into a lentiviral vector and high-titre virus produced. Human MPS IIIA fibroblast cultures were transduced with the sulphamidase vector and analysed using molecular, enzymatic and metabolic assays. High-titre virus was intravenously injected into six 5-week old MPS IIIA mice. Three of these mice were pre-treated with hyperosmotic mannitol. The weight of animals was monitored and GAG content in urine samples was analysed by polyacrylamide gel electrophoresis.

Results

Transduction of cultured MPS IIIA fibroblasts with the sulphamidase gene corrected both the enzymatic and metabolic defects. Sulphamidase secreted by gene-corrected cells was able to cross correct untransduced MPS IIIA cells. Urinary GAG was found to be greatly reduced in samples from mice receiving the vector compared to untreated MPS IIIA controls. In addition, the weight of treated mice became progressively normalised over the 6-months post-treatment.

Conclusion

Lentiviral vectors appear promising vehicles for the development of gene therapy for MPS IIIA.  相似文献   
98.
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.  相似文献   
99.
Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., 13C–13C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (−0.75) commensurate to the control (−0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.  相似文献   
100.
Cliona delitrix is a very destructive coral-excavating sponge in Caribbean coral reef systems, particularly for Montastraea species. Little is known about how these excavating sponges propagate across coral reefs. In this study a hypothesis was tested that coral breakage caused by the bioeroding activity facilitates the asexual propagation of this sponge and in turn favors the spread of the most aggressive sponge genotypes. An allozyme analysis, involving 12 loci systems of 52 sponge individuals from a total of 13 Montastraea heads, found that no two sponges possessed identical multi-locus genotypes. Contrary to the pattern expected for fragmenting species, the incidence of clonality and asexual propagation at the population level was minimal. The lack of correlation between genetic and physical distances for the studied sponges also suggests that population maintenance appears to derive from larval dispersal, with a spatial range of dispersal larger than the average distance between the coral heads (10–102 m).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号