首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   8篇
  国内免费   2篇
  284篇
  2014年   2篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  1999年   2篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   2篇
  1986年   2篇
  1985年   5篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1959年   5篇
  1958年   11篇
  1957年   8篇
  1956年   13篇
  1955年   9篇
  1954年   7篇
  1953年   11篇
  1952年   2篇
  1951年   5篇
  1950年   6篇
  1949年   5篇
  1948年   4篇
  1946年   2篇
  1927年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
161.
The structural basis of molecular adaptation   总被引:31,自引:21,他引:10  
The study of molecular adaptation has long been fraught with difficulties, not the least of which is identifying out of hundreds of amino acid replacements those few directly responsible for major adaptations. Six studies are used to illustrate how phylogenies, site- directed mutagenesis, and a knowledge of protein structure combine to provide much deeper insights into the adaptive process than has hitherto been possible. Ancient genes can be reconstructed, and the phenotypes can be compared to modern proteins. Out of hundreds of amino acid replacements accumulated over billions of years those few responsible for discriminating between alternative substrates are identified. An amino acid replacement of modest effect at the molecular level causes a dramatic expansion in an ecological niche. These and other topics are creating the emerging field of "paleomolecular biochemistry."   相似文献   
162.
Variation in rates of molecular evolution now appears to be widespread. The demonstration that body size is correlated with rates of molecular evolution suggests that physiological and ecological factors may be involved in molecular rate variation, but large-scale comparative studies are still lacking. Here, we use complete cytochrome b sequences from 85 species of tube-nosed seabirds (order Procellariiformes) and 5 outgroup species of penguins (order Sphenisciformes) to test for an association between body mass and rates of molecular evolution within the former avian order. Cladistic analysis of the 90 sequences estimates a phylogeny largely consistent with the traditional taxonomy of the Procellariiformes. The Diomedeidae, Procellariidae, and Pelecanoididae are monophyletic, while the Hydrobatidae are basal and paraphyletic. However, the two subfamilies within the Hydrobatidae (Hydrobatinae and Oceanitinae) are monophyletic. A likelihood ratio test detects significant deviation from clocklike evolution in our data. Using a sign test for an association between body mass and branch length in the seabird phylogeny, we find that larger taxa tend to have shorter terminal branch lengths than smaller taxa. This observation suggests that rates of mitochondrial DNA evolution are slower for larger taxa. Rate calibrations based on the fossil record reveal concordant body size effects. We interpret these results as evidence for a metabolic rate effect, as the species in this order exhibit large differences in metabolic rates, which are known to be highly correlated with body mass in this group. Our results support previous findings of body size effects and show that this effect can be significant even within a single avian order. This suggests that even lineage-specific molecular clocks may not be tenable if calibrations involve taxa with different metabolic rates.   相似文献   
163.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   
164.
165.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   
166.
167.
Tannic acid-stained microtubules with 12, 13, and 15 protofilaments   总被引:8,自引:8,他引:0       下载免费PDF全文
Subunit structure in the walls of sectioned microtubules was first noted by Ledbetter and Porter (6), who clearly showed that certain microtubules of plant meristematic cells have 13 wall protofilaments when seen in cross section. Earlier, protofilaments of microtubular elements had been described in negatively stained material, although exact counts of their number were difficult to obtain. In microtubular elements of axonemes, some success has been achieved in visualizing protofilaments in conventionally fixed and sectioned material (8, 10); much less success has been achieved in identifying and counting protofilaments of singlet cytoplasmic microtubules. By using glutaraldehyde-tannic acid fixation, as described by Misuhira and Futaesaku (7), Tilney et al. (12) studied microtubules from a number of sources and found that all have 13 protofilaments comprising their walls. These authors note that "...the number of subunits and their arrangement as protofilaments appear universal...". Preliminary studies of ventral nerve cord of crayfish fixed in glutaraldehyde-tannic acid indicated that axonal microtubules in this material possess only 12 protofilaments (4). On the basis of this observation, tannic acid preparations of several other neuronal and non-neuronal systems were examined. Protofilaments in microtubules from these several cell types are clearly demonstrated, and counts have been made which show that some kinds of microtubules have more or fewer protofilaments than the usual 13 and that at least one kind of microtubule has an even rather than an odd number.  相似文献   
168.
IT is usually supposed that amphetamine produces behavioural effects which include an increase of spontaneous motor activity and the elicitation of stereotyped behaviours1, by causing a release of endogenous catecholamines in the central nervous system2. This view is, for example, supported by the observation that amphetamine can release the catecholamines noradrenaline (NA) and dopamine (DA) from the central nervous system in vitro2 and in vivo3, 4 and that inhibition of catecholamine biosynthesis blocks the amphetamine effect5. Anatomical studies of the distribution of neurones containing catecholamine however, raise, questions about the general applicability of this hypothesis6.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号