首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   13篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1967年   1篇
  1899年   4篇
  1887年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
41.
42.
43.
Nep1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis that induce a hypersensitive-like response in dicot plants. The spatial structure and role of these proteins are yet unknown. In a paper published in BMC Plant Biology (2008; 8:50) we have proposed that the core region of Nep1-like proteins (NLPs) belong to the Cupin superfamily. Based on what is known about the Cupin superfamily, in this addendum to the paper we discuss how NLPs could form oligomers.Key words: quaternary structure, necrosis and ethylene inducing proteins, NLPs, MpNEP1, MpNEP2, NPP1, Moniliophthora perniciosa, Phytophthora parasiticaCupins may be organized as monomers, dimers, hexamers and octamers of β-barrel domains.1 To the best of our knowledge trimers have not been detected yet. The interaction of two monomers building up a dimeric structure is basically performed by three types of interactions: hydrophobic interactions between β-strands in different subunits, salt bridges and hydrogen bonds between β-strands. In cupin dimers, the hydrophobic interactions occur between two βI strands in different subunits (Fig. 1A and B). This strand represents the central axis of rotation of the dimer as one residue in βI interacts with the corresponding residue in the other subunit (Fig. 1B). Therefore, all residues in βI must be hydrophobic, as one residue interacts with the other subunit and the next one in the sequence interacts with the interior of the protein. Charged residues in βI would disrupt such interactions. Most cupin dimers have strong hydrophobic residues such as tryptophan (W), phenylalanine (F) and methionine (M) pointing towards the own subunit (↓), while small hydrophobic residues such as leucine (L), isoleucine (I), and valine (V) point to the other subunit (↑). A particular case is leucine that interacts with other subunits, for instance, βI = liaW (positions 217–220 in Fig. 1B) and βI = LVsw of type I and II NLP consensuses, respectively. Therefore, the pattern of hydropathicity suggests that the side chain orientation is βI = l217 ↑ i218 ↓ a219 ↑ W220 ↓ d221 ↑. However we observe that just after βI there is a charged residue (aspartate D221) which would point outwards disrupting the dimer or at least making it less stable. It is interesting to observe that the requirement for a negatively charged residue at this last position is very high: 96% of all type I NLPs contains an aspartate (D) or glutamate (E) indicating an important role for it, maybe in avoiding dimerization of the NLPs. A second interesting hypothesis is as follows: several cupins are oxygenases, decarboxylases, etc. and use a negatively charged residue, such as aspartate or glutamate as proton donor.1 Now, if the alternate pattern of side chains of the residues is βI = l217 ↓ i218 ↑ a219 ↓ W220 ↑ d221 ↓, instead of the previous one, then the aspartate or glutamate residue would point to the hydrophobic pocket and would be positioned to interact with the metal ion, as in cupins with enzymatic activity. However, there are no experimental evidences that the NLPs have enzymatic activity.Open in a separate windowFigure 1(A) Three-dimensional structure prediction for type I NLP consensus, (B) Interface between two βI strands in type I NLP consensus. From the left to the right: EF-coil with the conserved residue H162, βC and βH strands (superposed) with the conserved histidines H133 and H135 in βC, H193 and leucine L195 in βH, W220 in βI and W118 in βB. The strands in the right subunit follow the same pattern but rotated.The second type of interaction is salt bridges between charged residues in different subunits. Analyzing all interacting side chains in the 1VJ2 protein (dimer), we verify that the charged side chains of N35 and E57 (numbers in original structure) are only 2.72 Å apart. In the NLPs, this corresponds to N10836% (Q10860%) at the border of βB and E13898%. The negatively charged residue D125 helps to correct the orientation of the subunits in relation to each other avoiding any disorientation. The high conservation level of these residues suggests that NLPs are dimeric structures. However, as we will see next, only hydrophobic and charged interactions are not enough to build a dimer.Garcia et al. (2007)2 have used small angle X-ray scattering (SAXS) to show that, in solution, at low concentrations (<2 mg/ml) the two copies of the NLPs of Moniliophthora perniciosa, MpNEP1 and MpNEP2, exist as dimers and monomers, respectively. The same technique showed that at higher concentrations, >5 mg/ml, both proteins exist as dimers, as is the case for PpNPP1.2 They also reported, based on electrophoresis analysis, that PpNPP1 and MpNEP1 exist as oligomers and MpNEP2 as monomers.2 However, experiments with the PpNPP1 in size exclusion chromatography using myoglobin as size standard suggest that PpNPP1 is a monomer.3 Figure 2 compares MpNEP1, MpNEP2 and PpNPP1, where the most relevant differences in sequence are marked with asterisks (*) and are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2. These positions are methionine M27 and leucine L35, which occur only in MpNEP2, glycine G250, which occurs only in MpNEP2 and NEP1 (Fusarium oxysporum) and lysine K31, which occurs only MpNEP2, BAB04114 (Bacillus halodurans) and AAU23136 (Bacillus licheniformis). The other residues are aspartate D28, which occurs 9 times and alanine A37 which occurs 7 times of all investigated NLPs. Thus, the sequence mdHDkiakl at the start of the NLPs seems to explain the monomeric state of MpNEP2, although at higher concentrations they form dimers. Besides the weak hydrophobic interactions, dimeric cupins and bicupins (two β barrels in the same sequence building up a dimeric-like 4d-structure) are stable structures (see Fig. 1 in ref. 4). By aggregating the first β-strand in the start domain of one β-barrel to the ABIDG β-sheet of the other β-barrel, composing a big ABIDGY β-sheet (Y is the first β-strand). For instance, using the bicupin 1L3J (oxalate decarboxylase) as template, the low confidence level β-strand at position 26–33 (v in H29D30 avv) in type I NLPs corresponds to the first β-strand. Since this proceeds from both barrels they can build a stable structure (see Fig. 1 in ref. 4). The quaternary structure is related to the presence of interaction residues in the BID β-sheet of the cupin structure. These are present in the NLPs and would enable them to form dimers.Open in a separate windowFigure 2Alignment of type I NLP consensus, PpNPP1, MpNEP1 and MpNEP2. Solid line boxes are β-strands, double line boxes are α-helices. The sequence positions marked with asterisks (*) are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2.  相似文献   
44.
The tempisque (Sideroxylon capiri) is a tree native to Mexico used by the rural population for housing construction, poles and hedges, as fuel (wood) and also for fodder and ornamental purposes, among others. It is considered an endangered species. In order to contribute to its preservation and sustainable management, it was considered important to determine the proportion of viable seeds, the loss of viability due to storage period and the germination process by applying pregerminative treatments. We found that freshly collected seeds showed 100% viability, which decreased to 0% after 5 months of storage. According to the cumulative germination significant differences between treatments (p≤0.01) were found. It was observed that seeds can accelerate their time of germination with the previous exposure of 24 h in water at room temperature. The soaking treatment in water for 24 h at room temperature obtained final germination of 55%, while with the control 39% was reached. Soaking in hydrogen peroxide and scarification were the treatments with lower germination percentage (33 and 23%, respectively). To get a higher percentage of germinated seeds in a short time, it is necessary to give a soaking treatment in water for 24 h before sowing.  相似文献   
45.
Modular organisms are composed of iterated units of construction that vary in their spatial arrangement. This variation is expected to affect the fitness of modular organisms due to interactions among neighboring modules and the potential for such organisms to be genetically heterogeneous. We devise a spatially explicit model to investigate how spatial interactions among neighboring modules affect organism fitness. We show that fitness is strongly dependent on the spatial arrangement of modules in both genetically homogeneous and heterogeneous organisms, and that the magnitude of the variation is dependent on the strength of interactions among modules. Organism fitness is more variable with interactions among modules that are symmetrical (each affects each other in the same directions) than with asymmetrical interactions (neighbors affect each other in different directions). We conclude by discussing potential extension of the present framework to a general dynamic model of spatially structured organism development.  相似文献   
46.
47.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   
48.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   
49.
50.
Measuring qualitative traits of plant tissue is important to understand how plants respond to environmental change and biotic interactions. Near infrared reflectance spectrometry (NIRS) is a cost‐, time‐, and sample‐effective method of measuring chemical components in organic samples commonly used in the agricultural and pharmaceutical industries. To assess the applicability of NIRS to measure the ecologically important tissue traits of carbon, nitrogen, and phlorotannins (secondary metabolites) in brown algae, we developed NIRS calibration models for these constituents in dried Sargassum flavicans (F. K. Mertens) C. Agardh tissue. We then tested if the developed NIRS models could detect changes in the tissue composition of S. flavicans induced by experimental manipulation of temperature and nutrient availability. To develop the NIRS models, we used partial least squares regression to determine the statistical relationship between trait values determined in laboratory assays and the NIRS spectral data of S. flavicans calibration samples. Models with high predictive power were developed for all three constituents that successfully detected changes in carbon, nitrogen, and phlorotannin content in the experimentally manipulated S. flavicans tissue. Phlorotannin content in S. flavicans was inversely related to nitrogen availability, and nitrogen, temperature, and tissue age interacted to significantly affect phlorotannin content, demonstrating the importance of studies that investigate these three variables simultaneously. Given the speed of analysis, accuracy, small tissue requirements, and ability to measure multiple traits simultaneously without consuming the sample tissue, NIRS is a valuable alternative to traditional methods for determining algal tissue traits, especially in studies where tissue is limited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号