首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   19篇
  2022年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   12篇
  2013年   5篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   4篇
  2008年   8篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   12篇
  1998年   3篇
  1996年   4篇
  1993年   2篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
  1965年   6篇
  1958年   1篇
  1947年   2篇
  1946年   1篇
  1945年   1篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
85.
Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid‐phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback‐insensitive bacterial form of 3‐deoxy‐di‐arabino‐heptulosonate 7‐phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid‐phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers.  相似文献   
86.

Background

Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog.

Results

Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal.

Conclusions

Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.  相似文献   
87.
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril.  相似文献   
88.
A series of O-phenyl methyl-, ethyl- and benzylalanyl phosphoramidate pronucleotides derived from cytostatic 6-aryl-7-deazapurine ribonucleosides were prepared by the cross-coupling reactions of the 2′,3′-isopropylidene protected 6-chloro-7-deazapurine ribonucleoside phosphoramidates with (het)arylboronic acids or -stannanes followed by deprotection. Most of the prepared prodrugs exerted in vitro cytostatic effects against both solid tumor and lymphoid cancer cells within low micromolar range of concentrations. These activities were in general weaker or comparable to the activities of the parent nucleosides. Additional testing of selected prodrugs suggests that the lack of activity improvement over parent nucleosides is not due to the lack of permeability or inefficient catabolism of alanyl-ester by intracellular hydrolases. More likely, active efflux of prodrugs may play a role in their weak cytotoxic activity.  相似文献   
89.
90.
The monocot family Lemnaceae (duckweed) is composed of small, edible, aquatic plants. Spirodela oligorrhiza SP is a duckweed with a biomass doubling time of about 2 days under controlled, axenic conditions. Stably transformed Spirodela plants were obtained following co-cultivation of regenerative calli with Agrobacterium tumefaciens. GFP activity was successfully monitored in different subcellular compartments of the plant and correlated with different targeting sequences. Transgenic lines were followed for a period of at least 18 months and more than 180 vegetative doublings (generations). The lines are stable in morphology, growth rate, transgene expression, and activity as measured by DNA–DNA and immunoblot hybridizations, fluorescence activity measurements, and antibiotic resistance. The level of transgene expression is a function of leader sequences rather than transgene copy number. A stable, transgenic, GFP expression level >25% of total soluble protein is demonstrated for the S. oligorrhiza system, making it among the higher expressing systems for nuclear transformation in a higher plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号