首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2791篇
  免费   311篇
  2021年   38篇
  2020年   24篇
  2019年   22篇
  2018年   21篇
  2017年   41篇
  2016年   51篇
  2015年   88篇
  2014年   85篇
  2013年   120篇
  2012年   130篇
  2011年   120篇
  2010年   91篇
  2009年   71篇
  2008年   104篇
  2007年   107篇
  2006年   109篇
  2005年   96篇
  2004年   97篇
  2003年   78篇
  2002年   68篇
  2001年   74篇
  2000年   93篇
  1999年   66篇
  1998年   39篇
  1997年   46篇
  1996年   40篇
  1995年   35篇
  1994年   28篇
  1993年   39篇
  1992年   63篇
  1991年   41篇
  1990年   50篇
  1989年   56篇
  1988年   48篇
  1987年   49篇
  1986年   40篇
  1985年   40篇
  1984年   41篇
  1983年   34篇
  1982年   45篇
  1981年   33篇
  1980年   31篇
  1979年   59篇
  1978年   49篇
  1977年   42篇
  1976年   27篇
  1975年   34篇
  1974年   29篇
  1973年   22篇
  1968年   21篇
排序方式: 共有3102条查询结果,搜索用时 15 毫秒
931.
The retrograde axonal transport of neurotrophins occurs after receptor-mediated endocytosis into vesicles at the nerve terminal. We have been investigating the process of targeting these vesicles for retrograde transport, by examining the transport of [125I]-labelled neurotrophins from the eye to sympathetic and sensory ganglia. With the aid of confocal microscopy, we examined the phenomena further in cultures of dissociated sympathetic ganglia to which rhodamine-labelled nerve growth factor (NGF) was added. We found the label in large vesicles in the growth cone and axons. Light microscopic examination of the sympathetic nerve trunk in vivo also showed the retrogradely transported material to be sporadically located in large structures in the axons. Ultrastructural examination of the sympathetic nerve trunk after the transport of NGF bound to gold particles showed the label to be concentrated in relatively few large organelles that consisted of accumulations of multivesicular bodies. These results suggest that in vivo NGF is transported in specialized organelles that require assembly in the nerve terminal.  相似文献   
932.
Attention increases sensitivity of V4 neurons   总被引:25,自引:0,他引:25  
When attention is directed to a location in the visual field, sensitivity to stimuli at that location is increased. At the neuronal level, this could arise either through a multiplicative increase in firing rate or through an increase in the effective strength of the stimulus. To test conflicting predictions of these alternative models, we recorded responses of V4 neurons to stimuli across a range of luminance contrasts and measured the change in response when monkeys attended to them in order to discriminate a target stimulus from nontargets. Attention caused greater increases in response at low contrast than at high contrast, consistent with an increase in effective stimulus strength. On average, attention increased the effective contrast of the attended stimulus by a factor of 1.51, an increase of 51% of its physical contrast.  相似文献   
933.
Dictyostelium strains in which the gene encoding the cytoplasmic cAMP phosphodiesterase RegA is inactivated form small aggregates. This defect was corrected by introducing copies of the wild-type regA gene, indicating that the defect was solely the consequence of the loss of the phosphodiesterase. Using a computer-assisted motion analysis system, regA(-) mutant cells were found to show little sense of direction during aggregation. When labeled wild-type cells were followed in a field of aggregating regA(-) cells, they also failed to move in an orderly direction, indicating that signaling was impaired in mutant cell cultures. However, when labeled regA(-) cells were followed in a field of aggregating wild-type cells, they again failed to move in an orderly manner, primarily in the deduced fronts of waves, indicating that the chemotactic response was also impaired. Since wild-type cells must assess both the increasing spatial gradient and the increasing temporal gradient of cAMP in the front of a natural wave, the behavior of regA(-) cells was motion analyzed first in simulated temporal waves in the absence of spatial gradients and then was analyzed in spatial gradients in the absence of temporal waves. Our results demonstrate that RegA is involved neither in assessing the direction of a spatial gradient of cAMP nor in distinguishing between increasing and decreasing temporal gradients of cAMP. However, RegA is essential for specifically suppressing lateral pseudopod formation during the response to an increasing temporal gradient of cAMP, a necessary component of natural chemotaxis. We discuss the possibility that RegA functions in a network that regulates myosin phosphorylation by controlling internal cAMP levels, and, in support of that hypothesis, we demonstrate that myosin II does not localize in a normal manner to the cortex of regA(-) cells in an increasing temporal gradient of cAMP.  相似文献   
934.
In this study we describe a population of neurons in the adult rat trigeminal ganglion (TG) that express dopamine beta-hydroxylase (DBH) and tyrosine hydroxylase (TH), and transport anti-DBH from their terminals. We have used NGF and NT3 labeled with biotin and anti-p75NTR labeled with FITC to examine the transport of neurotrophins and their receptors by these cells. In both the superior cervical ganglion (SCG) and the TG all neurons that transported anti-DBH transported NGF. While 100% of the DBH positive neurons in the TG also transported NT3, approximately 25% of these neurons in the SCG failed to transport NT3. In the SCG virtually all the neurons transported anti-p75NTR with the neurotrophins while in the TG more than 25% of these neurons failed to transport anti-p75NTR with the neurotrophins. These findings suggest that DBH positive neurons in the TG depend upon target-derived NGF and NT3 for their noradrenergic phenotype.  相似文献   
935.
The non-sulphur purple bacterium Rhodopseudomonas palustris contains five pucAB genes for peripheral light-harvesting complexes. Bacteria grown under high-light conditions absorb at 800 and 850 nm but in low-light the 850 nm peak is almost absent and LH2 complexes are replaced by LH4. The genome contains six bacteriophytochromes (Bph). Bphs sense light in the red/far-red through a reversible Pr to Pfr transformation that controls gene expression. Bph3 (RPA1537) controls the expression of a cluster of photosynthetic genes, however most of the peripheral light harvesting complex genes are outside of this region. The pucAB-d genes encode LH4 peptides and are near two Bphs (RPA3015, RPA3016). We have characterised three Bphs and show that Bph4 RPA3015 and Bph3 RPA1537 have different dark stable states. It is known that Bph3 is active in its red absorbing Pr form and suggests a working hypothesis that Bph4 is active in the Pfr state. We show that LH4 expression can be induced with red light at the Pr absorption maximum (708 nm) of Bph4. The property of light transmission of water maybe an important factor in understanding this adaptation. Bph4 can sense the reduction in light intensity indirectly through an increase in ratio of transmitted red/far-red light. The red right activated Bph4 regulates the synthesis of LH4 which concentrates bacteriochlorophyll a pigment absorption at 800 nm to exploit a recovery in water light transmission in this region.  相似文献   
936.
A stranded 5-month-old female Pacific harbor seal (Phoca vitulina richardsi) was presented displaying tachypnea and diminished lung sounds. No neurological abnormalities were noted. The animal was treated for verminous pneumonia, but died 2 wk later. Gross necropsy examination revealed a severe obstructive verminous pneumonia associated with large numbers of Otostrongylus circumlitus. In addition, the majority of the right cerebral hemisphere was absent, with hypoplasia of the left cerebellar hemisphere, absence of the right pyramid, and malformation of the right occipital bone. Histopathologic findings included multifocal thrombosis and inflammation of pulmonary arteries, verminous pneumonia, and mild vacuolation of the subependymal white matter in the third ventricle representing swelling of myelin sheaths and edema. This is the first report of a hemicerebral anomaly in a marine mammal.  相似文献   
937.
Patients with dysphagia due to oropharyngeal disease or cerebrovascular accident require long-term nutritional support via enteral feeding, which often results in microbial overgrowth in the upper gastrointestinal (GI) tract. Gastric acid is the primary innate defense mechanism in the stomach and has been assumed to provide an effective barrier to microbial colonization at pH values of <4. To evaluate the efficacy of gastric acid as a barrier to overgrowth, the microbiota of gastric and duodenal aspirates was assessed by culturing methods. Additionally, a fermentor-based model incorporating enteral nutrition tubing of the gastric microbiota of enteral nutrition (EN) patients was constructed to assess the effect of pH on the microbiota. Results showed that gastric acidity had a relatively small effect on the numbers of microorganisms recovered from intestinal aspirates but did influence microbiota composition. Similarly, at pH 3 in the fermentor, a complex microbiota developed in the planktonic phase and in biofilms. The effect of pH on microbiota composition was similar in aspirates and in the fermentors. Candidas and lactobacilli were aciduric, while recoveries of Escherichia coli and Klebsiella pneumoniae decreased as pH was reduced, although both were still present in significant numbers at pH 3. Only Staphylococcus aureus and Bifidobacterium adolescentis persisted at higher pH values both in vitro and in vivo. Lactate and acetate were the main organic acids detected in both aspirates and fermentors. These data show that the simulator used in this investigation was capable of modeling the effects of environmental influences on the upper GI microbiota of EN patients and that gastric pH of <4 is not sufficient to prevent microbial overgrowth in these individuals.  相似文献   
938.
Statins downregulate myeloperoxidase gene expression in macrophages   总被引:5,自引:0,他引:5  
Statins, inhibitors of HMG-CoA reductase, have pleiotropic benefits independent of cholesterol levels, including anti-oxidant and anti-inflammatory effects. Here, we investigate the effect of statins on myeloperoxidase (MPO) expression. MPO, expressed in foam cell macrophages, was recently shown to oxidize the ApoA-1 component of HDL, impairing ABCA-1 mediated cholesterol efflux. High levels of serum MPO correlate with increased risk of CAD events. Findings here show that statins strongly inhibit MPO mRNA expression in human and murine monocyte-macrophages. Suppression was reversed by downstream intermediates of HMG-CoA reductase, mevalonate, and geranylgeranylpyrophosphate, but not farnesylpyrophosphate. An inhibitor of geranylgeranyltransferase, GGTI-286, mimics the effects of statins, indicating geranylgeranylation is key to MPO expression. Reduction of MPO mRNA levels was observed in vivo in leukocytes from statin-fed mice, correlating with reductions in MPO protein and enzyme activity. These findings suggest that the pleiotropic protections afforded by statins may be due in part to suppression of MPO expression.  相似文献   
939.
The vestibular organs in the inner ear are commonly thought of as sensors that serve balance, gaze control, and higher spatial functions such as navigation. Here, we investigate their role in the online control of voluntary movements. The central nervous system uses sensory feedback information during movement to detect and correct errors as they develop. Vestibular organs signal three-dimensional head rotations and translations and so could provide error information for body movements that transport the head in space. To test this, we electrically stimulated human vestibular nerves during a goal-directed voluntary tilt of the trunk. The stimulating current waveform was made identical to the angular velocity profile of the head in the roll plane. With this, we could proportionally increase or decrease the rate of vestibular nerve firing, as if the head were rotating faster or slower than it actually was. In comparison to movements performed without stimulation, subjects tilted their trunk faster and further or slower and less far, depending upon the polarity of the stimulus. The response was negligible when identical stimulus waveforms were replayed to stationary subjects. We conclude that the brain uses vestibular information for online error correction of planned body-movement trajectories.  相似文献   
940.
Fatty acid-binding proteins are cytosolic fatty acid chaperones, and the adipocyte isoform, aP2, plays an important role in obesity and glucose metabolism. Recently, this protein has been detected in macrophages where it strongly contributes to the development of atherosclerosis. Here, we investigated the role of aP2 in macrophage biology and the molecular mechanisms underlying its actions. We demonstrate that aP2-deficient macrophages display defects in cholesterol accumulation and alterations in pro-inflammatory responsiveness. Deficiency of aP2 alters the lipid composition in macrophages and enhances peroxisome proliferator-activated receptor gamma activity, leading to elevated CD36 expression and enhanced uptake of modified low density lipoprotein. The increased peroxisome proliferator-activated receptor gamma activity in aP2-deficient macrophages is also accompanied by a significant stimulation of the liver X receptor alpha-ATP-binding cassette transporter A1-mediated cholesterol efflux pathway. In parallel, aP2-deficient macrophages display reduced IkappaB kinase and NF-kappaB activity, resulting in suppression of inflammatory function including reduced cyclooxygenase-2 and inducible nitric-oxide synthase expression and impaired production of inflammatory cytokines. Our results demonstrate that aP2 regulates two central molecular pathways to coordinate macrophage cholesterol trafficking and inflammatory activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号