首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1771640篇
  免费   167625篇
  国内免费   1494篇
  2021年   18429篇
  2019年   16284篇
  2018年   20208篇
  2017年   19046篇
  2016年   29835篇
  2015年   43329篇
  2014年   51453篇
  2013年   77593篇
  2012年   51550篇
  2011年   44122篇
  2010年   49243篇
  2009年   48913篇
  2008年   40250篇
  2007年   39786篇
  2006年   41563篇
  2005年   42720篇
  2004年   41599篇
  2003年   38793篇
  2002年   36631篇
  2001年   56572篇
  2000年   54396篇
  1999年   48838篇
  1998年   28337篇
  1997年   28102篇
  1996年   27161篇
  1995年   25353篇
  1994年   24958篇
  1993年   24372篇
  1992年   41576篇
  1991年   40006篇
  1990年   38651篇
  1989年   38888篇
  1988年   35730篇
  1987年   34297篇
  1986年   32232篇
  1985年   33674篇
  1984年   30784篇
  1983年   27148篇
  1982年   24601篇
  1981年   23286篇
  1980年   21982篇
  1979年   27349篇
  1978年   23879篇
  1977年   22214篇
  1976年   21284篇
  1975年   21907篇
  1974年   22942篇
  1973年   23100篇
  1972年   20124篇
  1971年   18318篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
902.
In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. Molecular analysis of two of these genes revealed the importance of cytoplasmic components. One of these, Myoblast city, is expressed in several tissues and is homologous to the mammalian protein DOCK180. Myoblast city is presumably involved in cell recognition and cell adhesion. Blown fuse, the second cytoplasmic component, is selectively expressed in the mesoderm and essential in order to proceed from the prefusion complex to electron-dense plaques at opposed membranes between adjacent myoblasts. The rolling stone gene is transiently expressed during myoblast fusion. The Rost protein is located in the membrane and thus might be a key component for cell recognition. The molecular characterization of further genes relevant for fusion such as singles bar and sticks and stones will help to elucidate the mechanism of myoblast fusion in Drosophila.  相似文献   
903.
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.  相似文献   
904.
905.
906.
907.
908.
909.
910.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号