首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151080篇
  免费   126329篇
  国内免费   412篇
  1277821篇
  2018年   10556篇
  2016年   14128篇
  2015年   18617篇
  2014年   22241篇
  2013年   32037篇
  2012年   35603篇
  2011年   36579篇
  2010年   24799篇
  2009年   23146篇
  2008年   32614篇
  2007年   34208篇
  2006年   31919篇
  2005年   30779篇
  2004年   30542篇
  2003年   29431篇
  2002年   28710篇
  2001年   47646篇
  2000年   47627篇
  1999年   38434篇
  1998年   14536篇
  1997年   14802篇
  1996年   14151篇
  1995年   13370篇
  1994年   13086篇
  1993年   13081篇
  1992年   32567篇
  1991年   32055篇
  1990年   31527篇
  1989年   30734篇
  1988年   28487篇
  1987年   27329篇
  1986年   25624篇
  1985年   25832篇
  1984年   21492篇
  1983年   18849篇
  1982年   14459篇
  1981年   13417篇
  1980年   12451篇
  1979年   20740篇
  1978年   16295篇
  1977年   14862篇
  1976年   14217篇
  1975年   15882篇
  1974年   16718篇
  1973年   16546篇
  1972年   15371篇
  1971年   13709篇
  1970年   11933篇
  1969年   11490篇
  1968年   10310篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4661-4667
The basis for the apparent cooperativity in the activation of protein kinase C by phosphatidylserine has been addressed using proteolytic sensitivity, resonance energy transfer, and enzymatic activity. We show that binding of protein kinase C to detergent-lipid mixed micelles and model membranes is cooperatively regulated by phosphatidylserine. The sigmoidal dependence on phosphatidylserine for binding is indistinguishable from that observed for the activation of the kinase by this lipid [Newton & Koshland (1989) J. Biol. Chem. 264, 14909-14915]. Thus, protein kinase C activity is linearly related to the amount of phosphatidylserine bound. Furthermore, under conditions where protein kinase C is bound to micelles at all lipid concentrations, activation of the enzyme continues to display a sigmoidal dependence on the phosphatidylserine content of the micelle. This indicates that the apparent cooperativity in binding does not arise because protein kinase C senses a higher concentration of phosphatidylserine once recruited to the micelle. Our results reveal that the affinity of protein kinase C for phosphatidylserine increases as more of this lipid binds, supporting the hypothesis that a domain of phosphatidylserine is cooperatively sequestered around the enzyme.  相似文献   
962.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   
963.
964.
It was shown in in vitro experiments that etmozin at a concentration of 100 micrograms/ml significantly suppressed (by 21%) platelet aggregation induced by ADP, but it had no effect on platelet aggregation induced by arachidonic acid. In in vivo experiments etmozin was found to cause a marked suppression of tendon collagen-induced platelet aggregation in the doses 2-5 mg/kg having antiarrhythmic activity. Under suppressed platelet aggregation induced by indomethacin, the prostaglandin biosynthesis blocker etmozin displayed no antiaggregation effect. It is suggested that etmozin effects on ADP release from platelets play the main role in the mechanism of its antiaggregation action.  相似文献   
965.
It has been pointed out by several different groups of investigators in the past several years that ascorbic acid was a potent inhibitor of the binding of dopamine (DA) agonists including 3H-DA itself and 3H-ADTN, 3H-apomorphine and 3H-norpropylapomorphine to neostriatal membrane preparations. However, the significance of this effect of ascorbic acid has been controversial. For example, it has recently been claimed that the stereospecific binding of DA agonists is facilitated by ascorbic acid and can be measured only in its presence. In the present study in neostriatal membrane preparations in the absence of ascorbic acid, the binding of 3H-DA was very potently inhibited by potent DA agonists (DA, ADTN, apomorphine). Considerably weaker effects were obtained with norepinephrine, isoproterenol, serotonin, catechol and pyrogallol. Stereospecific effects were clearly observed in that the binding of 3H-DA was inhibited to a much greater extent by several biologically active enantiomers than by their less active counterparts. For example, (-)-2-hydroxyapomorphine and (-)-norpropylapomorphine were much more potent inhibitors than their corresponding (+) isomers. This binding of 3H-DA was also very strongly inhibited by sodium ascorbate and several other reducing agents. In control experiments in the neostriatal membrane preparation in the absence of ascorbic acid, there was no detectable decomposition of 3H-DA. The data suggest that 3H-DA can, in the absence of sodium ascorbate, bind stereospecifically to a site that has the properties of a DA receptor. Furthermore, sodium ascorbate is a potent inhibitor of this stereospecific binding.  相似文献   
966.
967.
The enzymes of phospholipid synthesis in Clostridium butyricum   总被引:5,自引:0,他引:5  
We have examined extracts of Clostridium butyricum for several enzymes of phospholipid synthesis. Membrane particles were shown to catalyze the formation of CDP-diglyceride from [3H]CTP and phosphatidic acid. The reaction was dependent on Mg2+ and stimulated by monovalent cations. CDP-diglyceride formed in vitro was found to be a substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. The formation of phosphatidylglycerophosphate from added CDP-diglyceride and [U-14C]sn-glycerol-3-phosphate was dependent on Mg2+ and Triton X-100. The dephosphorylation of endogenously-generated phosphatidylglycerophosphate to yield phosphatidylglycerol was observed to be pH-dependent. The formation of phosphatidylserine from CDP-diglyceride and L-[3-14C]serine was stimulated by Mg2+ and Triton X-100. dCDP-diglyceride was a suitable substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. Phosphatidylserine decarboxylase activity was barely detectable in membrane particles from C. butyricum. The addition of E. coli membrane particles provided efficient phosphatidylserine decarboxylase activity in this system. Although plasmalogens are the principal lipids of C. butyricum, none of the products of phospholipid synthesis formed in vitro contained measurable amounts of plasmalogens. The subcellular distribution of both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase in C. butyricum was also studied. Both were found to be membrane-associated.  相似文献   
968.
Growing cultures of an autolysis-defective pneumococcal mutant were exposed to [3H]benzylpenicillin at various multiples of the minimal inhibitory concentration and incubated until the growth of the cultures was halted. During the process of growth inhibition, we determined the rates and degree of acylation of the five penicillin-binding proteins (PBPs) and the rates of peptidoglycan incorporation, protein synthesis, and turbidity increase. The time required for the onset of the inhibitory effects of benzylpenicillin was inversely related to the concentration of the antibiotic, and inhibition of peptidoglycan incorporation always preceded inhibition of protein synthesis and growth. When cultures first started to show the onset of growth inhibition, the same characteristic fraction of each PBP was in the acylated form in all cases, irrespective of the antibiotic concentration. Apparently, saturation of one or more PBPs with the antibiotic beyond these threshold levels is needed to bring about interference with normal peptidoglycan production and cellular growth. Although it was not possible to correlate the inhibition of cell wall synthesis or cell growth with the degree of acylation (percentage saturation) of any single PBP, there was a correlation between the amount of peptidoglycan synthesized and the actual amount of PBP 2b that was not acylated. In cultures exposed to benzylpenicillin concentrations greater than eight times the minimal inhibitory concentration, the rates of peptidoglycan incorporation underwent a rapid decline when bacterial growth stopped. However, in cultures exposed to lower concentrations of benzylpenicillin (one to six times the minimal inhibitory concentration) peptidoglycan synthesis continued at constant rate for prolonged periods, after the turbidity had ceased to increase. We conclude that inhibition of bacterial growth does not require a complete inhibition or even a major decline in the rate of peptidoglycan incorporation. Rather, inhibition of growth must be caused by an as yet undefined process that stops cell division when the rate of incorporation of peptidoglycan (or synthesis of protein) falls below a critical value.  相似文献   
969.
970.
Miniature swine MHC antigens from three inbred herds were examined by two-dimensional gel electrophoresis. These antigens were found to constitute a series of complex glycoproteins displaying haplotype-specific patterns that allowed the distinction of both class I and class II molecules among the three haplotypes. Selected outbred pig antisera reacted with a subset of class I antigens, suggesting the presence of at least two distinct molecular species among these antigens. Similarly, alloantisera reacting with mouse Ia antigens and a monoclonal anti-human DR were shown to immunoprecipitate a subset of class II molecules. Examination of the cells from two recombinant haplotypes demonstrated that both independent recombinational events took place between the class I and class II genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号