首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   796343篇
  免费   82589篇
  国内免费   244篇
  2018年   7964篇
  2017年   7610篇
  2016年   10665篇
  2015年   13490篇
  2014年   16063篇
  2013年   23182篇
  2012年   26031篇
  2011年   26799篇
  2010年   18314篇
  2009年   16923篇
  2008年   23953篇
  2007年   24927篇
  2006年   23297篇
  2005年   22395篇
  2004年   22178篇
  2003年   21328篇
  2002年   20847篇
  2001年   34747篇
  2000年   34219篇
  1999年   27585篇
  1998年   10191篇
  1997年   10271篇
  1996年   9853篇
  1995年   9063篇
  1994年   8729篇
  1993年   8759篇
  1992年   22345篇
  1991年   21926篇
  1990年   21377篇
  1989年   20822篇
  1988年   19089篇
  1987年   18327篇
  1986年   17100篇
  1985年   16962篇
  1984年   13940篇
  1983年   12188篇
  1982年   9233篇
  1981年   8358篇
  1980年   7759篇
  1979年   12941篇
  1978年   10204篇
  1977年   9199篇
  1976年   8808篇
  1975年   9820篇
  1974年   10487篇
  1973年   10356篇
  1972年   9485篇
  1971年   8461篇
  1970年   7381篇
  1969年   7259篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
172.
173.
174.
175.
The time and dose dependence of the relationship between uptake of labelled precursors into protein and RNA and production of testosterone by rabbit follicles was examined. Although testosterone production was stimulated by luteinizing hormone at concentrations between 0.1 and 10 microgram/ml, the uptake of [3H]leucine into protein was significant only when the concentration of luteinizing hormone was greater than 2.5 microgram/ml. Increased production of testosterone was observed within 15 min of stimulation with luteinizing hormone whereas uptake of [3H]leucine was only significant at 90 min. Puromycin (40 microgram/ml) and cycloheximide (10 microgram/ml) in the presence of luteinizing hormone inhibited the synthesis of both testosterone and protein. However, lower concentrations of puromycin (0.1, 1 and 10 microgram/ml) and cycloheximide (1 microgram/ml) had no effect on luteinizing hormone-induced testosterone production but significantly inhibited protein synthesis by 58, 37, 31 and 71%, respectively. Actinomycin D (20, 80 and 160 microgram/ml) alone and in combination with 5 microgram luteinizing hormone/ml severely inhibited uptake of [3H]uridine into RNA without affecting testosterone production. However, with 1 microgram actinomycin/ml, testosterone production was significantly (P less than 0.01) greater than in the presence of luteinizing hormone alone. These results cast doubt on the obligatory role of RNA and protein synthesis in rabbit ovarian follicular steroidogenesis.  相似文献   
176.
177.
Amiloride fluxes across erythrocyte membranes   总被引:3,自引:0,他引:3  
Amiloride is known to inhibit both the influx of Na+ and the activation of mitogenesis in many cultured cell lines. This paper describes experiments in which the permeability coefficient of amiloride was determined from measurements of tracer fluxes across human erythrocytes and resealed ghosts. From an analysis of these fluxes, a permeability coefficient of 10(-7) cm/s for the uncharged form of amiloride was deduced. Based upon this measured permeability value, we present calculations of intracellular accumulation times of amiloride in cells of differing surface-to-volume ratio.  相似文献   
178.
Calcium ionophores inhibit apoptosis in the IL-3-dependent cell line BAF3 and maintain the cells in a viable noncycling state. In this report, an identical effect of ionophore was also demonstrated on the multipotent IL-3-dependent progenitor cell line FDCP-MIX and on the primary IL-3-dependent cell population that could be cultured from murine bone marrow. Inhibition of apoptosis required extracellular calcium and could be blocked by cyclosporin A. Nuclei from IL-3-dependent cells were found to lack a calcium-activatable nuclease that degrades chromatin in the linker region between nucleosomes, unlike the nuclei of lymphoid cells. The mechanism of action of calcium ionophore could be divided into two distinct steps. First, ionophore induced the production of a survival factor that stimulated DNA synthesis and was identified as IL-4. Second, ionophore inhibited the cell cycle of the various IL-3-dependent cells. IL-4 production could be inhibited by cyclosporin A and required extracellular calcium, whereas cell cycle arrest did not. This implied that factor production was the step that was necessary for inhibition of apoptosis and maintenance of cell viability. This was confirmed by the use of an anti-IL-4R antibody, which blocked the inhibition of apoptosis induced by calcium ionophores.  相似文献   
179.
The effects on a cloned DNA fragment carrying an actinomycin resistance determinant on physiological processes in strains of streptomycetes with various potencies in producing this antibiotic, their inactive mutants, and the model strain ofStreptomyces lividans66 were studied. This fragment was shown to modulate bacterial resistance to actinomycin and biosynthesis of antibiotics.  相似文献   
180.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号