首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983174篇
  免费   91805篇
  国内免费   1088篇
  2018年   19219篇
  2017年   17756篇
  2016年   18262篇
  2015年   15222篇
  2014年   17836篇
  2013年   25740篇
  2012年   32346篇
  2011年   40872篇
  2010年   30745篇
  2009年   25928篇
  2008年   35014篇
  2007年   37420篇
  2006年   26062篇
  2005年   25209篇
  2004年   25451篇
  2003年   24614篇
  2002年   23986篇
  2001年   39326篇
  2000年   38943篇
  1999年   31021篇
  1998年   11398篇
  1997年   11563篇
  1996年   10936篇
  1995年   10101篇
  1994年   9740篇
  1993年   9878篇
  1992年   25349篇
  1991年   25009篇
  1990年   24271篇
  1989年   23745篇
  1988年   21828篇
  1987年   20998篇
  1986年   19520篇
  1985年   19484篇
  1984年   16031篇
  1983年   13938篇
  1982年   10498篇
  1981年   9480篇
  1980年   8869篇
  1979年   14954篇
  1978年   11880篇
  1977年   10691篇
  1976年   10127篇
  1975年   11454篇
  1974年   12354篇
  1973年   12202篇
  1972年   11453篇
  1971年   10339篇
  1970年   8839篇
  1969年   8673篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
931.
932.
933.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
934.
To avoid negative impacts on food production, novel non-food biofuel feedstocks need to be identified and utilised. One option is to utilise marine biomass, notably fast-growing, large marine ‘plants’ such as the macroalgal kelps. This paper reports on the changing composition of Laminaria digitata throughout it growth cycle as determined by new technologies. The potential of Laminaria sp. as a feedstock for biofuel production and future biorefining possibilities was assessed through proximate and ultimate analysis, initial pyrolysis rates using thermo-gravimetric analysis (TGA), metals content and pyrolysis gas chromatography-mass spectrometry.Samples harvested in March contained the lowest proportion of carbohydrate and the highest ash and alkali metal content, whereas samples harvested in July contained the highest proportions of carbohydrate, lowest alkali metals and ash content. July was therefore considered the most suitable month for harvesting kelp biomass for thermochemical conversion to biofuels.  相似文献   
935.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   
936.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
937.
The influence of malate and cytochrome c on fatty acid oxidation under control and ischemic conditions was investigated. In the medium without malate, cytochrome did not make fatty acid oxidation decreased during ischemia return to normal. Oxidation in the media containing malate and cytochrome did not differ from control only when it was measured after preliminary oxidation of endogenous substrates. The ratio of palmitoyl-CoA and palmitoyl carnitine to the respiration rates at state 3 was unchanged at 60 min ischemia. Apparently, no changes in carnitine acyltransferase playing a role in oxidation of palmitoyl-CoA took place. Thus, the decrease of fatty acid oxidation at early periods of ischemia is largely caused by a reduction in the content of cytochrome c and intermediates of Krebs cycle in the mitochondria.  相似文献   
938.
939.
Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme·substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans.  相似文献   
940.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4661-4667
The basis for the apparent cooperativity in the activation of protein kinase C by phosphatidylserine has been addressed using proteolytic sensitivity, resonance energy transfer, and enzymatic activity. We show that binding of protein kinase C to detergent-lipid mixed micelles and model membranes is cooperatively regulated by phosphatidylserine. The sigmoidal dependence on phosphatidylserine for binding is indistinguishable from that observed for the activation of the kinase by this lipid [Newton & Koshland (1989) J. Biol. Chem. 264, 14909-14915]. Thus, protein kinase C activity is linearly related to the amount of phosphatidylserine bound. Furthermore, under conditions where protein kinase C is bound to micelles at all lipid concentrations, activation of the enzyme continues to display a sigmoidal dependence on the phosphatidylserine content of the micelle. This indicates that the apparent cooperativity in binding does not arise because protein kinase C senses a higher concentration of phosphatidylserine once recruited to the micelle. Our results reveal that the affinity of protein kinase C for phosphatidylserine increases as more of this lipid binds, supporting the hypothesis that a domain of phosphatidylserine is cooperatively sequestered around the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号