首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   45篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   11篇
  2015年   26篇
  2014年   15篇
  2013年   19篇
  2012年   34篇
  2011年   25篇
  2010年   18篇
  2009年   18篇
  2008年   23篇
  2007年   25篇
  2006年   22篇
  2005年   20篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
61.
Tzeng HT  Tsai HF  Liao HJ  Lin YJ  Chen L  Chen PJ  Hsu PN 《PloS one》2012,7(6):e39179
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Recent studies in animal models of viral infection indicate that the interaction between the inhibitory receptor, programmed death (PD)-1, on lymphocytes and its ligand (PD-L1) play a critical role in T-cell exhaustion by inducing T-cell inactivation. High PD-1 expression levels by peripheral T-lymphocytes and the possibility of improving T-cell function by blocking PD-1-mediated signaling confirm the importance of this inhibitory pathway in inducing T-cell exhaustion. We studied T-cell exhaustion and the effects of PD-1 and PD-L1 blockade on intrahepatic infiltrating T-cells in our recently developed mouse model of HBV persistence. In this mouse animal model, we demonstrated that there were increased intrahepatic PD-1-expressing CD8+ and CD4+ T cells in mice with HBV persistence, but PD-1 upregulation was resolved in mice which had cleared HBV. The Intrahepatic CD8+ T-cells expressed higher levels of PD-1 and lower levels of CD127 in mice with HBV persistence. Blockade of PD-1/PD-L1 interactions increased HBcAg-specific interferon (IFN)-γ production in intrahepatic T lymphocytes. Furthermore, blocking the interaction of PD-1 with PD-L1 by an anti-PD-1 monoclonal antibody (mAb) reversed the exhausted phenotype in intrahepatic T lymphocytes and viral persistence to clearance of HBV in vivo. Our results indicated that PD-1 blockage reverses immune dysfunction and viral persistence of HBV infection in a mouse animal model, suggesting that the anti-PD-1 mAb might be a good therapeutic candidate for chronic HBV infection.  相似文献   
62.
Vascular intimal hyperplasia (IH) limits the long term efficacy of current surgical and percutaneous therapies for atherosclerotic disease. There are extensive changes in gene expression and cell signaling in response to vascular therapies, including changes in nitric oxide (NO) signaling. NO is well recognized for its vasoregulatory properties and has been investigated as a therapeutic treatment for its vasoprotective abilities. The circulating molecules nitrite (NO(2)(-)) and nitrate (NO(3)(-)), once thought to be stable products of NO metabolism, are now recognized as important circulating reservoirs of NO and represent a complementary source of NO in contrast to the classic L-arginine-NO-synthase pathway. Here we review the background of IH, its relationship with the NO and nitrite/nitrate pathways, and current and future therapeutic opportunities for these molecules.  相似文献   
63.
The expression of neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated in some cancers; therefore NGAL has potential as a tumor biomarker. Although the regulation mechanism for this is unknown, one study has shown that it is likely to involve a microRNA (miRNA). Here, we investigate the relation between miRNA expression and NGAL expression, and the role of NGAL in tumorigenesis. Using miRNA target–detecting software, we analyze the mRNA sequence of NGAL and identify a target site for microRNA-138 (miR-138) in nucleotides 25–53 of the 3′ UTR. We then analyze NGAL and miR-138 expression in three cancer cell lines originating from breast, endometrial and pancreatic carcinomas (the MCF-7, RL95-2 and AsPC-1 cell lines), respectively, using quantitative (real-time) PCR and western blot analysis. Metastasis is a critical event in cancer progression, in which malignant cell proliferation, migration and invasion increase. To determine whether miR-138-regulated NGAL expression is associated with metastasis, the proliferation and migration of the cell line are examined after miR-138 transfection. Using nude mice, we examine both the tumorigenicity of these cell lines and of miR-138-transfected cancer cells in vivo, as well as the effect of treating tumors with an antibody against NGAL. Our results show that these cancer cell lines down-regulate NGAL when miR-138 is highly expressed. Ectopic transfection of miR-138 suppresses NGAL expression and cell migration in RL95-2 and AsPC-1 cells, demonstrating that miR-138-regulated NGAL expression is associated with cell migration. Additionally, injection of the NGAL antibody diminishes NGAL-mediated tumorigenesis in nude mice, and miR-138 transfection of cancer cells reduces tumor formation. As the cell proliferation data showed that the tumor size should be regulated by NGAL-related cell growth. Taken together, our results indicate that NGAL may be a good target for cancer therapy and suggest that miR-138 acts as a tumor suppressor and may prevent metastasis.  相似文献   
64.

Introduction

The danger signal HMGB1 is released from ischemic myocytes, and mediates angiogenesis in the setting of hindlimb ischemia. HMGB1 is a ligand for innate immune receptors TLR2 and TLR4. While both TLR2 and TLR4 signal through myeloid differentiation factor 88 (MyD88), TLR4 also uniquely signals through TIR-domain-containing adapter-inducing interferon-β (TRIF). We hypothesize that TLR2 and TLR4 mediate ischemic myocyte regeneration and angiogenesis in a manner that is dependent on MyD88 signaling.

Methods

Mice deficient in TLR2, TLR4, MyD88 and TRIF underwent femoral artery ligation in the right hindlimb. Laser Doppler perfusion imaging was used to assess the initial degree of ischemia and the extent of perfusion recovery. Muscle regeneration, necrosis and fat replacement at 2 weeks post-ligation were assessed histologically and vascular density was quantified by immunostaining. In vitro, endothelial tube formation was evaluated in matrigel in the setting of TLR2 and TLR4 antagonism.

Results

While control and TLR4 KO mice demonstrated prominent muscle regeneration, both TLR2 KO and TRIF KO mice exhibited marked necrosis with significant inflammatory cell infiltrate. However, MyD88 KO mice had a minimal response to the ischemic insult with little evidence of injury. This observation could not be explained by differences in perfusion recovery which was similar at two weeks in all the strains of mice. TLR2 KO mice demonstrated abnormal vessel morphology compared to other strains and impaired tube formation in vitro.

Discussion

TLR2 and TRIF signaling are necessary for muscle regeneration after ischemia while MyD88 may instead mediate muscle injury. The absence of TLR4 did not affect muscle responses to ischemia. TLR4 may mediate inflammatory responses through MyD88 that are exaggerated in the absence of TLR2. Additionally, the actions of TLR4 through TRIF may promote regenerative responses that are required for recovery from muscle ischemia.  相似文献   
65.
The FcgammaRIIB is a potent regulator of BCR signaling and as such plays a decisive role in controlling autoimmunity. The use of advanced imaging technologies has provided evidence that the earliest events in Ag-induced BCR signaling include the clustering of the BCR, the selective and transient association of the clustered BCR with raft lipids, and the concentration of BCR clusters in an immune synapse. That lipid rafts play a role in FcgammaRIIB's regulation of BCR signaling was suggested by recent studies showing that a lupus-associated loss of function mutation resulted in the receptor's exclusion from lipid rafts and the failure to regulate BCR signaling. In this study, we provide evidence from both biochemical analyses and fluorescence resonance energy transfer in conjunction with both confocal and total internal reflection microscopy in living cells that the FcgammaRIIB, when coligated with the BCR, associates with lipid rafts and functions both to destabilize the association of the BCR with raft lipids and to block the subsequent formation of the B cell's immune synapse. These results define new early targets of FcgammaRIIB inhibitory activity in the Ag-induced B cell activation pathway.  相似文献   
66.
67.
68.
Permanent functional deficit in patients with spinal cord injury (SCI) is in part due to severe neural cell death. Therefore, cell replacement using stem cells and neural progenitors that give rise to neurons and glia is thought to be a potent strategy to promote tissue repair after SCI. Many studies have shown that stem cells and neural progenitors can be isolated from embryonic, postnatal and adult spinal cords. Recently, we isolated neural progenitors from newborn rat spinal cords. In general, the neural progenitors grew as spheres in culture, and showed immunoreactivity to a neural progenitor cellular marker, nestin. They were found to proliferate and differentiate into glial fibrillary acidic protein-positive astroglia and multiple neuronal populations, including GABAergic and cholinergic neurons. Neurotrophin 3 and neurotrophin 4 enhanced the differentiation of neural progenitors into neurons. Furthermore, the neural progenitors that were transplanted into contusive spinal cords were found to survive and have migrated in the spinal cord rostrally and caudally over 8 mm to the lesion center 7 days after injury. Thus, the neural progenitors isolated from newborn rat spinal cords in combination with neurotrophic factors may provide a tool for cell therapy in SCI patients.  相似文献   
69.
70.
Ovarian cancer, the deadliest of gynecologic cancers, is usually not diagnosed until advanced stages. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-containing drug. Expression of neurogenic locus notch homolog 3 (Notch3) is associated with chemoresistance and poor overall survival in ovarian cancer patients. Overexpression of NICD3 (the constitutively active form of Notch3) in OVCA429 ovarian cancer cells (OVCA429/NICD3) renders them resistance to carboplatin treatment compared to OVCA429/pCEG cells expressing an empty vector. We have previously shown that methylseleninic acid (MSeA) induces oxidative stress and activates ataxia-telangiectasia mutated and DNA-dependent protein kinase in cancer cells. Here we tested the hypothesis that MSeA and carboplatin exerted a synthetic lethal effect on OVCA429/NICD3 cells. Co-treatment with MSeA synergistically sensitized OVCA429/NICD3 but not OVCA429/pCEG cells to the killing by carboplatin. This synergism was associated with a cell cycle exit at the G2/M phase and the induction of NICD3 target gene HES1. Treatment of N-acetyl cysteine or inhibitors of the above two kinases did not directly impact on the synergism in OVCA429/NICD3 cells. Taken together, these results suggest that the efficacy of carboplatin in the treatment of high grade ovarian carcinoma can be enhanced by a combinational therapy with MSeA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号