首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188255篇
  免费   94847篇
  国内免费   98362篇
  1381464篇
  2023年   8460篇
  2022年   9496篇
  2021年   10705篇
  2020年   9974篇
  2019年   11198篇
  2018年   11557篇
  2017年   8027篇
  2016年   9063篇
  2015年   10332篇
  2014年   13665篇
  2013年   12626篇
  2012年   107805篇
  2011年   121695篇
  2010年   29569篇
  2009年   21956篇
  2008年   102113篇
  2007年   106037篇
  2006年   99382篇
  2005年   94545篇
  2004年   91640篇
  2003年   86929篇
  2002年   77158篇
  2001年   62017篇
  2000年   77370篇
  1999年   32674篇
  1998年   7195篇
  1997年   5459篇
  1996年   4655篇
  1995年   4403篇
  1994年   4575篇
  1993年   3779篇
  1992年   4359篇
  1991年   3846篇
  1990年   3776篇
  1989年   4294篇
  1988年   4269篇
  1987年   3919篇
  1986年   3735篇
  1985年   3572篇
  1983年   3390篇
  1959年   3879篇
  1958年   6824篇
  1957年   6798篇
  1956年   6073篇
  1955年   5733篇
  1954年   5439篇
  1953年   5173篇
  1952年   4656篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
961.
The free and protein amino acid composition of Glycine max (L.) Merrill cotyledons was determined for the entire developmental period using high performance liquid chromatography. Arginine constituted 18% of the total protein nitrogen throughout development, and there was a linear arginine nitrogen accumulation rate of 1212 nanomoles per cotyledon per day between 16 and 58 days after anthesis. Arginine and asparagine were major constituents of the free amino acid pool, constituting 14 to 62% and 2 to 41% of the total free amino acid nitrogen, respectively. The urea cycle intermediates, citrulline, ornithine, and argininosuccinate were also detected in the free pool. A comparison of the amino acid composition of cotyledonary protein and of seedcoat exudate suggested that 72% of the cotyledon's arginine requirement is satisfied by in situ biosynthesis, and that 20% of the transformed nitrogen is incorporated into arginine. Also, [1-14C]glutamate and [U-14C]glutamine were fed to excised cotyledons. After 4 hours, 14C was incorporated into protein and released as 14CO2, but none was incorporated into the C-1 and C-6 positions of free and protein arginine, determined using arginine-specific enzyme-linked assays. It is not currently known whether arginine biosynthesis in the cotyledon involves glutamate delivered from the mother plant or glutamate derived in situ.  相似文献   
962.
The catalytic degradation of 2-carboxyarabinitol 1-phosphate (CA 1-P), a naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), was investigated by chromatographic and spectroscopic analyses of the reaction products. Carboxy-labeled [14C]CA 1-P was incubated with a partially purified tobacco (Nicotiana rustica) chloroplast protein that has been shown previously to catalyze metabolism of CA 1-P to a form incapable of inhibiting Rubisco (ME Salvucci, GP Holbrook, JC Anderson, and G Bowes [1988] FEBS Lett 231: 197-201). In the presence and absence of NADPH, ion-exchange chromatography showed a progressive conversion of [2′-14C]CA 1-P to a labeled compound which coeluted with authentic carboxyarabinitol. Parallel assays with unlabeled CA 1-P showed a concomitant decrease in the ability of reaction samples to inhibit Rubisco activity. In separate experiments, a 1:1 stoichiometry was found between the release of inorganic phosphate from [2′-14C]CA 1-P and accumulation of the 14C-labeled product. Liberation of inorganic phosphate was not observed when the tobacco enzyme was incubated with ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate, glucose-1-phosphate, glucose-6-phosphate, or 6-phosphogluconate. Proton nuclear magnetic resonance spectroscopy of the labeled CA 1-P reaction product established its identity as carboxyarabinitol. We therefore propose that light-stimulated degradation of CA 1-P is catalyzed in vivo by a specific phosphatase, 2-carboxyarabinitol 1-phosphatase. Carboxyarabinitol 1-phosphatase activity was detected in the absence of NADPH, but increased threefold when 2 millimolar NADPH was present. Thus, while not required for the reaction, NADPH may play an important role in the regulation of CA 1-P degradation.  相似文献   
963.
Water deficits during seed filling decrease seed size in soybean (Glycine max L.). This may result from a reduction in the supply of assimilates from the maternal plant and/or an inhibition of seed metabolism. To determine whether maternal or zygotic factors limited seed growth, we examined the effects of a plant water deficit on the supply of sucrose to and its utilization by developing embryos. Plants were grown in the greenhouse, and water deficits were imposed by withholding water for a period of 6 days during linear seed fill. When water was withheld, leaf water potential decreased rapidly, inhibiting canopy photosynthesis completely within 3 days. However, seed dry weight (nodes 7-11) continued to increase at or near the control rate. The level of total extractable carbohydrates in leaf, stem, and pericarp tissue decreased by 70, 50, and 45%, respectively, indicating that reserves were mobilized to support seed growth. Cotyledon sucrose content decreased from about 60 milligrams per gram dry weight to 30 milligrams per gram dry weight. Similarly, the concentration of sucrose in the interfacial apoplast of the cotyledons decreased from approximately 100 millimolar to 50 millimolar. However, the rate of sucrose accumulation by excised embryos, measured in a short-term in vitro assay, increased in response to the water deficit. These results indicate that both source and sink activity in soybean are altered by water deficits to maintain the flux of assimilates to the developing embryos. This may explain why seed growth is maintained, albeit for a shorter duration, when soybean is exposed to water deficits during the seed filling period.  相似文献   
964.
Kimata Y  Hase T 《Plant physiology》1989,89(4):1193-1197
Four ferredoxin isoproteins were identified in the C4 plant Zea mays L. by analysis of extracts from leaves, mesocotyls, and roots of the young seedlings. The relative amounts of the isoproteins isolated from the photosynthetic and nonphotosynthetic organs were different. All the isoproteins were present in the leaves of green and etiolated plants, whereas two out of the four isoproteins were not detected in the roots or in the mesocotyls. During the greening of etiolated seedlings, the level of the two isoproteins unique to the leaf increased markedly. Analysis of the cellular and subcellular distribution of the two major leaf isoproteins showed that one isoprotein was present in the chloroplasts of both mesophyll and bundle sheath cells, whereas the other was only found in the chloroplasts of bundle sheath cells. This is the first report of the cell-specific expression of ferredoxin isoproteins in the leaves of a C4 plant.  相似文献   
965.
Light-shade adaptation of the chlorophyll a/b containing procaryote Prochlorothrix hollandica was studied in semicontinuous cultures adapted to 8, 80 and 200 μmole quanta per square meter per second. Chlorophyll a contents based on dry weight differed by a factor of 6 and chlorophyll b by a factor of 2.5 between the two extreme light conditions. Light utilization efficiencies determined from photosynthesis response curves were found to decrease in low light grown cultures due to lower light harvesting efficiencies; quantum requirements were constant at limiting and saturating irradiances for growth. At saturating growth irradiances, changes in light saturated oxygen evolution rate originated from changes in chlorophyll a antenna relative to the number of reaction centers II. At light-limiting conditions both the number of reaction centers II and the antenna size changed. The amount of chlorophyll b relative to reaction center II remained constant. As in cyanobacteria, the ratio of reaction center I to reaction center II was modulated during light-shade adaptation. On the other hand, time constants for photosynthetic electron transport (4 milliseconds) were low as observed in green algae and diatoms. The occurrence of state one to two and state two to one transitions is reported here. Another feature linking photosynthetic electron transport in P. hollandica to that in the eucaryotic photosynthetic apparatus was blockage of the state one to two transition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Although chlorophyll b was reported in association with photosystem I, the 630 nanometer light effect does not exclude that chlorophyll b is the photoreceptor for the state one to two transition.  相似文献   
966.
Inactivation of the pyruvate dehydrogenase complex catalyzed by pyruvate dehydrogenase kinase was studied using intact mitochondria purified from green leaf tissue of pea (Pisum sativum L.) and dialyzed mitochondrial extracts. Thiamine pyrophosphate was inhibitory in dialyzed extracts but not in intact mitochondria, except in the presence of high concentrations of Na+. NH4+, at concentrations as low as 20 micromolar, markedly stimulated inactivation in dialyzed extracts. K+ in the range 1 to 10 millimolar also enhanced inactivation. In contrast, Na+ was without affect at lower concentrations but was inhibitory at 10 to 100 millimolar levels. The effect of NH4+ is discussed in relation to a possible regulatory interaction between photorespiratory NH4+ production and the entry of carbon into the tricarboxylic acid cycle by way of the pyruvate dehydrogenase complex.  相似文献   
967.
Gametophytes of the fern Onoclea sensibilis grow as filaments in the dark and in red light and become planar in blue light. Pulse-labeling 4-day-old gametophytes with [35S]methionine at different times after transfer to dark, red, and blue light environments revealed higher rates of amino acid uptake and protein synthesis in blue light than in red light or in the dark. Characterization of the extant and newly synthesized soluble proteins by one- and two-dimensional gel electrophoresis showed that the patterns of protein accumulation and synthesis in gametophytes exposed to short periods of red or blue light were qualitatively indistinguishable from those of gametophytes maintained in the dark. However, some striking increases and decreases in the levels of certain polypeptides were noted and these changes were accentuated during continued growth of gametophytes in the different environments. The results show that photomorphogenesis of gametophytes of O. sensibilis is associated with quantitative rather than qualitative changes in the population of mRNAs available for translation.  相似文献   
968.
Effective (N2-fixing) alfalfa (Medicago sativa L.) and plant-controlled ineffective (non-N2-fixing) alfalfa recessive for the in1 gene were compared to determine the effects of the in1 gene on nodule development, acetylene reduction activity (ARA), and nodule enzymes associated with N assimilation and disease resistance. Effective nodule ARA reached a maximum before activities of glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), asparagine synthetase (AS), and phosphoenolpyruvate carboxylase (PEPC) peaked. Ineffective nodule ARA was only 5% of effective nodule ARA. Developmental profiles of GS, GOGAT, AAT, and PEPC activities were similar for effective and ineffective nodules, but activities in ineffective nodules were lower and declined earlier. Little AS activity was detected in developing ineffective nodules. Changes in GS, GOGAT, AAT, and PEPC activities in developing and senescent effective and ineffective nodules generally paralleled amounts of immunologically detectable enzyme polypeptides. Effective nodule GS, GOGAT, AAT, AS, and PEPC activities declined after defoliation. Activities of glutamate dehydrogenase, malate dehydrogenase, phenylalanine ammonia lyase, and caffeic acid-o-methyltransferase were unrelated to nodule effectiveness. Maximum expression of nodule N-assimilating enzymes appeared to require the continued presence of a product associated with effective bacteroids that was lacking in in1 effective nodules.  相似文献   
969.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   
970.
Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号