首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   9篇
  国内免费   26篇
  118篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1979年   2篇
  1975年   3篇
  1936年   3篇
排序方式: 共有118条查询结果,搜索用时 0 毫秒
31.
以往的研究表明GPI-80的表达可能与髓系细胞的分化相关。DMSO及RA是两种不同的中性粒细胞的诱导分化剂,均可刺激HL-60白血病细胞向中性粒细胞分化。GPI-80是人糖基化磷脂酰肌醇锚糖蛋白,被认为是潜在的β2-黏合素分子依赖的白细胞黏附的调节剂,主要在人中性粒细胞上表达。本研究通过RT—PCR、流式细胞仪及Western—blot分析,检测分化细胞的GPI-80表达,并分析GPI-80的表达与CD11b及CD71表达之间的关系。结果表明GPI-80在RA诱导的类中性粒细胞上只有mRNA水平上的微弱表达,用流式细胞仪和Western—blot分析均检测不到,且RA可抑制GPI-80的表达;相反GPI-80在DMSO诱导的类中性粒细胞上有明显的表达,且随DMSO的浓度增加及诱导时间的延长而增强。GPI-80的表达出现在CD11b上调表达及CD71下调表达之后,提示GPI-80表达与DMSO诱导分化的类中性粒细胞的成熟密切相关。RA不能明确诱导GPI-80的表达,反而抑制GPI-80的表达,提示可能两者诱导HL-60细胞分化时所激活的信号传递通路不同。  相似文献   
32.
遮荫对山麦冬生长特性和生物量分配的影响   总被引:12,自引:1,他引:12  
研究了不同遮荫水平(遮光率分别为:对照0%、 20%、50%、70%~75%、80%~85%、92.5%)对山麦冬生长以及生物量分配特性的影响。结果表明,随着遮荫程度的加重,山麦冬的生物量增量表出现先上升后下降的趋势,在遮荫50%水平下生物量增量达到最高;随光强减弱同化物分配发生改变,叶重比增加,根重比和根冠比下降。此外,遮荫还提高了植株的含水量和冠径。我们还观察到强光环境和深度遮荫均不利于花序、分蘖和块根的形成。因此,我们认为山麦冬作为耐荫植物对光环境具有一定的适应能力,强光或严重遮荫均不利于其正常生长发育。  相似文献   
33.
以盆栽草莓(Fragaria×ananassa)为材料研究了水分胁迫下克隆植物草莓母株和子株间的水分调控机制及其与碳同化、光系统Ⅱ激发能分配的关系.实验材料分为匍匐茎连接和剪断两个大组,进行两步实验.第1步实验,对连接组和剪断组的所有母株控水,子株充分供水;4d后进入第2步实验,把连接组分为两小组,对其中一组充分供水子株开始控水,另一组保持不变.结果表明,土壤干旱引起母株叶片失水,并使其净光合速率和气孔导度显著降低.但是连接组中供水良好的子株能有效缓解缺水母株的水分胁迫.当供水良好的子株也开始受到干旱处理的时候,则会加剧与之相连母株的水分胁迫.受胁迫母株可以通过加强渗透调节能力和降低水势从相连子株获取水分.虽然土壤干旱会造成受胁迫母株叶片脱落酸(abscisic acid, ABA)含量的大幅度增加,但是与之相连子株的叶片ABA含量并没有增加;并且气孔导度与ABA变化趋势一致.(1)草莓母株和子株间的水分运输是由二者的水势差驱动的;(2)ABA不会通过匍匐茎在母株和子株间传递并影响相邻子株气孔导度;(3)在水分异质性较大情况下,生理整合可明显提高克隆系统的碳同化能力和光系统Ⅱ激发能利用效率.  相似文献   
34.
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响,阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明:水淹条件下新生沉水功能叶光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)、电子传递活性与对照叶片差异很小,但水淹使气生功能叶的Fv/Fm显著降低;植株总生物量呈负增长趋势;活体弱光条件下,沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化;中等光强和强光条件下其RWC和Fv/Fm迅速降低;离体条件下,5小时的中等光强对沉水叶的Fv/Fm影响不显著,在随后的弱光下能恢复到出水时的初始状态;强光能使沉水叶的Fv/Fm大幅降低,且弱光下不能恢复到出水时的初始水平;在解剖结构上,水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶,而且沉水叶没有明显的栅栏组织分化,但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明,水淹使水芹原气生叶PSⅡ功能迅速衰退,但对新生沉水叶片影响很小。水芹植株出水后,沉水叶片结构变化使其在光下保水能力下降,而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏,进而致使其死亡。  相似文献   
35.
36.
本文主要描述鲥鱼仔幼鱼阶段有关摄食、消化器官的发育、不同大小仔幼鱼食物组成特点、摄食量及其昼夜摄食节律。此外,还就仔幼鲥鱼人工饲养条件与天然状况下的生长作了比较。结果表明,只要供饵正常,孵化环道内生活的仔幼鲥生长速度可以略快于鄱阳湖同期天然生长个体的速度,为今后人工培育仔幼鲥进行放流和增殖提供资料。  相似文献   
37.
促性腺激素的神经内分泌调控   总被引:1,自引:2,他引:1       下载免费PDF全文
本文简要介绍了哺乳动物胎儿时的促性腺激素的神经内分泌调节及成体时促性腺激素的神经内分泌调节,着重介绍儿茶酚胺、阿片样、γ-氨基丁酸(GABA)、GPR54(视黄酸家族G蛋白偶联受体)/kisspeptin(GPR54内源性配体)以及Ghrelin(生长激素促分泌素受体的内源性配体)对促性腺激素分泌的调控作用。  相似文献   
38.
为理解夏季睡莲叶片挺水前后光合特性的变化,以雪白睡莲和小花睡莲为材料比较了浮水和挺水条件下两者叶温、相对含水量、气体交换和叶绿素荧光的差异以及与气孔形态的关系。结果表明,小花睡莲和雪白睡莲气孔器大小相似,但前者气孔密度明显高于后者,故小花睡莲浮水叶片的气孔导度和蒸腾速率较雪白睡莲高。小花睡莲挺水叶片的光合速率、气孔导度和蒸腾速率均明显低于浮水叶片,不过这种差异在雪白睡莲中不明显。相对于雪白睡莲,小花睡莲挺水叶片午间除叶温明显升高外,叶片相对含水量下降幅度更大;遮阴可以一定程度上改善小花睡莲挺水叶的水分状况。进一步研究显示,小花睡莲挺水叶中午发生了严重光抑制,而雪白睡莲挺水叶的光抑制则较轻。因此,推测小花睡莲叶片水分平衡能力较弱,挺水叶水分失衡容易导致叶温升高和光合速率下降,最终加剧光抑制并致使叶片死亡。本研究对阐述北方夏季栽培条件下一些睡莲品种挺水叶易发生死亡的原因具有一定意义。  相似文献   
39.
自然条件下环境光强往往是波动的,但波动光变化频率影响植物光合作用的机制尚不清楚.为了探讨植物光合作用对波动光频率的响应及机制,本文以黄瓜为材料,对植物生长、叶绿素含量、气体交换、叶绿素荧光以及抗氧化酶进行了研究.结果显示,相对于弱光(T4),强光下(T1, T2和T3)黄瓜株高、生物量、叶面积和比叶重均明显较高,但波动频率增加(T2, T3)能够导致这些参数值降低.强光与弱光处理相比其叶绿素总量较低,且随着波动光频率的提高叶绿素含量轻微下降.强光下的光合速率和气孔导度均高于弱光,不过随着强光波动频率增加,两者呈下降趋势.荧光诱导动力学的结果显示,尽管各处理间光系统Ⅱ(PSⅡ)最大光化学效率没有明显差异,但波动频率较大时黄瓜的PSⅡ的电子传递活性略有降低;而且增加强光波动频率还导致光系统Ⅱ天线转化效率(Fv′/Fm′)明显降低和非光化学猝灭(NPQ)大幅增加.此外,强光下黄瓜的酶促抗氧化系统的主要酶活性高于弱光,但波动光频率提高能够降低其活性.因此,提高波动光的频率不仅导致黄瓜光合能力下降,还导致其主要抗氧化酶的活性降低,所以增强的热耗散可能是其应对波动光下过剩激发能的重要机制.此外,本文还对黄瓜适应波动强光和稳态强光的差异进行了讨论.  相似文献   
40.
孟国玲  何道 《昆虫知识》1998,35(2):94-97
黑胸茧蜂除寄生根红铃虫、梨小食心虫外,豆荚螟是又一发现的新寄主。黑胸茧蜂对棉红铃虫寄生率高,豆荚螟、梨小食心虫依序次之。在湖北,黑胸茧蜂越冬代于5月上、中旬开始羽化,5月中、下旬寄生第二代梨小食心虫,6月中、下旬越冬代大量羽化集中寄生春大豆上第二代豆荚螟,7月上、中旬转移至棉田寄生第一代棉红铃虫,8月上、中旬又向棉田四周的夏大豆田转移寄生第三代豆荚螟,9月上、中旬迁回棉田寄生第三代棉红铃虫直至越冬。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号