首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22423篇
  免费   1089篇
  国内免费   12篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   2890篇
  2011年   3133篇
  2010年   373篇
  2009年   213篇
  2008年   2593篇
  2007年   2514篇
  2006年   2164篇
  2005年   2082篇
  2004年   1928篇
  2003年   1636篇
  2002年   1275篇
  2001年   903篇
  2000年   1136篇
  1999年   416篇
  1998年   43篇
  1997年   26篇
  1996年   14篇
  1995年   15篇
  1994年   12篇
  1993年   20篇
  1992年   19篇
  1991年   15篇
  1990年   10篇
  1989年   10篇
  1988年   11篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   2篇
  1966年   2篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
Tumor necrosis factor (TNF) signaling leads to pleiotropic responses in a wide range of cell types, in part by activating antiapoptotic and proapoptotic pathways. Previous studies have suggested that TNF receptor-associated factor (TRAF) 2 can mediate crucial antiapoptotic signals during TNF stimulation. However, it is unclear how the antiapoptotic signals via TRAF2 in TNF-R1 signaling is regulated. Here we show that TRAF1 is cleaved by caspase-8 into two fragments during apoptosis induced by TNF. Overexpression of the C-terminal cleavage product, TRAF1-c, increased TNF-induced cell death of hybridoma T cells. Importantly, we demonstrate that the cleavage product of TRAF1 coimmunoprecipitates with TRAF2 that is released from the TNF-R1 complex in response to prolonged TNF treatment. These results indicate that caspase-dependent cleavage of TRAF1 generates TRAF1-c fragments that are able to bind TRAF2, and then sequester TRAF2 from the TNF-R1 complex, rendering cells, at least in part, sensitive to TNF.  相似文献   
112.
Cell motility plays a critical role for many physiological and pathological processes including wound healing, fibrosis, angiogenesis, and tumor metastasis. Platelet-derived growth factor (PDGF) is among the most potent stimuli for mesenchymal cell migration. The PDGF B-chain homodimer PDGF BB activates both alpha- and beta-receptor subunits (alpha-PDGFR and beta-PDGFR), and promotes cell migration in many cell types including fibroblasts and smooth muscle cells. PDGF-A chain homodimer PDGF AA activates alpha-PDGFR only, and its role for cell migration is still debatable. PDGF BB, but not PDGF AA, induces smooth muscle cell migration. Interestingly, alpha-PDGFR was shown to antagonize beta-PDGFR-induced smooth muscle cell migration. In the present study, we investigated the role of alpha-PDGFR and beta-PDGFR in PDGF-mediated cell migration of murine fibroblasts (NIH 3T3). Unlike smooth muscle cells, both PDGF AA and PDGF BB promoted NIH 3T3 cell migration. The effect of PDGF BB activation of beta-PDGFR alone for cell migration was examined using previously established NIH 3T3 clones in which alpha-PDGFR signaling is inhibited by a dominant-negative alpha-PDGFR, or an antisense construct of alpha-PDGFR. PDGF BB activation of beta-PDGFR alone was sufficient to induce cell migration, but the efficiency was significantly lower compared to PDGF activation of both receptors. These results showed that both alpha- and beta-PDGFRs promote fibroblast cell migration and their effects are additive. Taken together, we propose that cell-type specific alpha-PDGFR signaling is critical for regulation of mesenchymal cell migration in response to PDGF isoform, whereas beta-PDGFR mainly promotes cell migration.  相似文献   
113.
The antifungal activity and mechanism of a 23-mer peptide, PMAP-23, derived from pig myeloid was investigated. PMAP-23 displayed strong antifungal activity against yeast and mold. To investigate the antifungal mechanism of PMAP-23, fluorescence activated flow cytometry and confocal laser scanning microscopy were performed. Candida albicans treated with PMAP-23 showed higher fluorescence intensity by propidium iodide(PI) staining, which was similar to that of Melittin than untreated cells. Confocal microscopy showed that the peptide was located in the plasma membrane. The action of peptides against fungal cell membranes was examined by treating prepared protoplasts of C. albicans with the peptide and lipid vesicle titration test. The result showed that the peptide prevented the regeneration of fungal cell walls and induced release of the fluorescent dye trapped in the artificial membrane vesicles, indicating that the peptide exerts its antifungal activity by acting on the plasma lipid membrane.  相似文献   
114.
Nitric oxide as a bioregulator of apoptosis   总被引:28,自引:0,他引:28  
Nitric oxide (NO), synthesized from l-arginine by NO synthases, is a small, diffusible, highly reactive molecule with dichotomous regulatory roles under physiological and pathological conditions. NO can promote apoptosis (proapoptosis) in some cells, whereas it inhibits apoptosis (antiapoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as iron, thiols, proteins, and reactive oxygen species. Long-lasting production of NO acts as a proapoptotic modulator by activating caspase family proteases through the release of mitochondrial cytochrome c into the cytosol, upregulation of p53 expression, activation of JNK/SAPK, and altering the expression of apoptosis-associated proteins including Bcl-2 family proteins. However, low or physiological concentrations of NO prevent cells from apoptosis induced by trophic factor withdrawal, Fas, TNFalpha, and lipopolysaccharide. The antiapoptotic mechanism can be understood via expression of protective genes such as heat shock proteins, Bcl-2 as well as direct inhibition of the apoptotic caspase family proteases by S-nitrosylation of the cysteine thiol. Our current understanding of the mechanisms by which NO exerts both pro- and antiapoptotic actions is discussed in this review article.  相似文献   
115.
The molecular mechanisms that control the function of periodontal ligament (PDL) fibroblasts remain unclear. We speculated that the character of differentiating PDL fibroblasts is defined by the altered expansion of specific genes not found in neighboring gingival fibroblasts in the periodontium. To expand this set, subtractive hybridization was applied between cultured human PDL and gingival fibroblasts to identify genes differentially expressed in PDL. Consequently five candidate clones, PDLs (periodontal ligament specific) 5, -17, -22, -25, and -31 were identified and characterized by homology search, Northern analysis, and in situ hybridization. Although the mRNAs of these clones were expressed by bone marrow cells and rarely by gingival fibroblasts, the highest expression was detected in the PDL cells, which were uniformly distributed throughout the whole PDL. Amongst the five candidate clones, we focused on PDLs17, because it is a hypothetical protein whose biological function has not been reported yet in the database. Polyclonal antiserum raised against PDLs17 peptide was made, and stained the PDL fibroblasts, osteoblast-like cells and stromal cells in the bone marrow, but not gingival fibroblasts. The results suggest that clones, PDLs5, -17, -22, -25, and -31 may be used as PDL fibroblast-specific markers, and that PDLs17 could act as an important factor in the differentiation process of PDL fibroblasts.  相似文献   
116.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. ALS is the target of several structurally diverse classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. The roles of three well-conserved histidine residues (H351, H392, and H487) in tobacco ALS were determined using site-directed mutagenesis. Both H487F and H487L mutations abolished the enzymatic activity as well as the binding affinity for the cofactor FAD. Nevertheless, the mutation of H487F did not affect the secondary structure of the ALS. The K(m) values of H351M, H351Q, and H351F are approximately 18-, 60-, and fivefold higher than that of the wild-type ALS, respectively. Moreover, the K(c) value of H351Q for FAD is about 137-fold higher than that of wALS. Mutants H351M and H351Q showed very strong resistance to Londax (a sulfonylurea) and Cadre (an imidazolinone), whereas mutant H351F was weakly resistant to them. However, the secondary structures of mutants H351M and H351Q appeared to be different from that of wALS. The mutation of H392M did not have any significant effect on the kinetic parameters nor the resistance to ALS-inhibiting herbicides. These results suggest that the His487 residue is located at the active site of the enzyme and is likely involved in the binding of cofactor FAD in tobacco ALS. Mutational analyses of the His351 residue imply that the active site of the ALS is probably close to its binding site of the herbicides, Londax and Cadre.  相似文献   
117.
Choi G  Ha NC  Kim MS  Hong BH  Oh BH  Choi KY 《Biochemistry》2001,40(23):6828-6835
Delta5-3-ketosteroid isomerase (KSI) from Pseudomonas putida Biotype B catalyzes the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers via a dienolate intermediate. Two electrophilic catalysts, Tyr-14 and Asp-99, are involved in a hydrogen bond network that comprises Asp-99 Odelta2...O of Wat504...Tyr-14 Oeta...Tyr-55 Oeta.Tyr-30 Oeta in the active site of P. putida KSI. Even though neither Tyr-30 nor Tyr-55 plays an essential role in catalysis by the KSI, the catalytic activity of Y14F could be increased ca. 26-51-fold by the additional Y30F and/or Y55F mutation in the hydrogen bond network. To identify the structural basis for the pseudoreversion in the KSI, crystal structures of Y14F and Y14F/Y30F/Y55F have been determined at 1.8 and 2.0 A resolution, respectively. Comparisons of the two structures near the catalytic center indicate that the hydrogen bond between Asp-99 Odelta2 and C3-O of the steroid, which is perturbed by the Y14F mutation, can be partially restored to that in the wild-type enzyme by the additional Y30F/Y55F mutations. The kinetic parameters of the tyrosine mutants with the additional D99N or D99L mutation also support the idea that Asp-99 contributes to catalysis more efficiently in Y14F/Y30F/Y55F than in Y14F. In contrast to the catalytic mechanism of Y14F, the C4 proton of the steroid substrate was found to be transferred to the C6 position in Y14F/Y30F/Y55F with little exchange of the substrate 4beta-proton with a solvent deuterium based on the reaction rate in D2O. Taken together, our findings strongly suggest that the improvement in the catalytic activity of Y14F by the additional Y30F/Y55F mutations is due to the changes in the structural integrity at the catalytic site and the resulting restoration of the proton-transfer mechanism in Y14F/Y30F/Y55F.  相似文献   
118.
We demonstrate the formation of micropatterned sol-gel structures containing active proteins by patterning with polydimethylsiloxane (PDMS) microchannels. To transport sol solution efficiently into the hydrophobic PDMS microchannels, a hydrophilic-hydrophobic block copolymer was used to impart hydrophilicity to the PDMS microchannels. Poor adhesion of the micropatterned gel structure onto glass slides was improved by treating the glass surface with a polymeric substrate. To minimize cracks in the gel microstructure, hybrid matrices of interpenetrating organic and inorganic networks were prepared containing the reactive organic moieties polyvinylalcohol or polyvinylpyrrolidone. Retention of biochemical activity within the micropatterned gel was demonstrated by performing immunobinding assays with immobilized immunoglobulin G (IgG) antibody. The potential application of microfluidics technology to immobilized-enzyme biocatalysis was demonstrated using PDMS-patterned microchannels filled with trypsin-containing sol-gels. This work provides a foundation for the microfabrication of functional protein chips using sol-gel processes.  相似文献   
119.
A kinetic resolution process for the production of chiral amines was developed using an enzyme-membrane reactor (EMR) and a hollow-fiber membrane contactor with (S)-specific omega-transaminases (omega-TA) from Vibrio fluvialis JS17 and Bacillus thuringiensis JS64. The substrate solution containing racemic amine and pyruvate was recirculated through the EMR and inhibitory ketone product was selectively extracted by the membrane contactor until enantiomeric excess of (R)-amine exceeded 95%. Using the reactor set-up with flat membrane reactor (10-mL working volume), kinetic resolutions of alpha-methylbenzylamine (alpha-MBA) and 1-aminotetralin (200 mM, 50 mL) were carried out. During the operation, concentration of ketone product, i.e., acetophenone or alpha-tetralone, in a substrate reservoir was maintained below 0.1 mM, suggesting efficient removal of the inhibitory ketone by the membrane contactor. After 47 and 32.5 h of operation using 5 U/mL of enzyme, 98.0 and 95.5% ee of (R)-alpha-MBA and (R)-1-aminotetralin were obtained at 49.5 and 48.8% of conversion, respectively. A hollow-fiber membrane reactor (39-mL working volume) was used for a preparative-scale kinetic resolution of 1-aminotetralin (200 mM, 1 L). After 133 h of operation, enantiomeric excess reached 95.6% and 14.3 g of (R)-1-aminotetralin was recovered (97.4% of yield). Mathematical modeling of the EMR process including the membrane contactor was performed to evaluate the effect of residence time. The simulation results suggest that residence time should be short to maintain the concentration of the ketone product in EMR sufficiently low so as to decrease conversion per cycle and, in turn, reduce the inhibition of the omega-TA activity.  相似文献   
120.
Onconase is an amphibian protein that is now in Phase III clinical trials as a cancer chemotherapeutic. Human pancreatic ribonuclease (RNase 1) is homologous to Onconase but is not cytotoxic. Here, ERDD RNase 1, which is the L86E/N88R/G89D/R91D variant of RNase 1, is shown to have conformational stability and ribonucleolytic activity similar to that of the wild-type enzyme but > 10(3)-fold less affinity for the endogenous cytosolic ribonuclease inhibitor protein. Most significantly, ERDD RNase 1 is toxic to human leukemia cells. The addition of a non-native disulfide bond to ERDD RNase 1 not only increases the conformational stability of the enzyme but also increases its cytotoxicity such that its IC(50) value is only 8-fold greater than that of Onconase. Thus, only a few amino acid substitutions are necessary to make a human protein toxic to human cancer cells. This finding has significant implications for human cancer chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号