首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190262篇
  免费   94606篇
  国内免费   99100篇
  1383968篇
  2023年   8470篇
  2022年   9506篇
  2021年   11005篇
  2020年   10009篇
  2019年   11212篇
  2018年   11568篇
  2017年   8038篇
  2016年   9101篇
  2015年   10355篇
  2014年   13745篇
  2013年   12643篇
  2012年   107847篇
  2011年   121724篇
  2010年   29583篇
  2009年   21990篇
  2008年   102137篇
  2007年   106056篇
  2006年   99430篇
  2005年   94565篇
  2004年   91671篇
  2003年   86964篇
  2002年   77179篇
  2001年   62054篇
  2000年   77439篇
  1999年   32773篇
  1998年   7297篇
  1997年   5611篇
  1996年   4784篇
  1995年   4513篇
  1994年   4693篇
  1993年   3906篇
  1992年   4509篇
  1991年   3962篇
  1990年   3868篇
  1989年   4381篇
  1988年   4300篇
  1987年   3931篇
  1986年   3756篇
  1985年   3589篇
  1983年   3412篇
  1959年   3881篇
  1958年   6826篇
  1957年   6801篇
  1956年   6075篇
  1955年   5738篇
  1954年   5442篇
  1953年   5173篇
  1952年   4656篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
Nitrate reductase (NR, EC 1.6.6.1) from higher plants is a homodimeric enzyme carrying a molybdenum cofactor at the catalytic site. Tungsten can be substituted for molybdenum in the cofactor structure, resulting in an inactive enzyme. When nitratefed Nicotiana tabacum plants were grown on a nutrient solution in which tungstate was substituted for molybdate, NR activity in the leaves decreased to a very low level within 24 hours while NR protein accumulated progressively to a level severalfold higher than the control after 6 days. NR mRNA level in molybdate-grown plants exhibited a considerable day-night fluctuation. However, when plants were treated with tungstate, NR mRNA level remained very high. NR activity and protein increased over a 24-hour period when nitrate was added back to N-starved molybdate-grown plants. NR mRNA level increased markedly during the first 2 hours and then decreased. In the presence of tungstate, however, the induction of NR activity by nitrate was totally abolished while high levels of NR protein and mRNA were both induced, and the high level of NR mRNA was maintained over a 10-hour period. These results suggest that the substitution of tungsten for molybdenum in NR complex leads to an overexpression of the NR structural gene. Possible mechanisms involved in this deregulation are discussed.  相似文献   
882.
Three lipoxygenase isozymes are synthesized in developing soybean (Glycine max [L.] Merr. cv Williams) embryos and are found in high levels in cotyledons of mature seeds (B Axelrod, TM Cheesbrough, S Zimmer [1981] Methods Enzymol 71: 441-451). Upon germination at least two new protein species appear which are localized mainly (on a protein basis) in the hypocotyl/radicle section. These lipoxygenase species appear also in seedlings of each of three lipoxygenase nulls (1×1, 1×2, and 1×3) deficient in one of the dormant seed lipoxygenases. The germination-associated species are distinguishable from dry seed lipoxygenase by their more acidic isoelectric points as revealed in isoelectric focusing gels. They are active from as early as 2 to at least 5 days after the start of imbibition. These germination-stimulated species qualify as lipoxygenase by their inhibition by the lipoxygenase inhibitors n-propyl gallate and salicyl hydroxamic acid and their lack of inhibition by KCN. Further, they are not active on the peroxidase substrate pair H2O2/3-amino-9-ethyl carbazole. They are recognized on Western blots by polyclonal antibodies to the seed lipoxygenase-1 isozyme and the major induced species has a molecular weight of approximately 100,000, similar to that of the cotyledon lipoxygenases. These lipoxygenases appear to be synthesized de novo upon germination since they comigrate with radioactive protein species from seeds germinated in [35S]methionine.  相似文献   
883.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   
884.
Leghemoglobin was localized by immunogold techniques in nodules of Lupinus albus cv Multolupa inoculated with Bradyrhizobium sp. (Lupinus) strain ISLU 16. The protein localization was performed in nodules embedded in Spurr's and Araldite epoxy resins and Lowycryl K4M. A very good preservation of both the ultrastructure and antigenicity was obtained with the tissues embedded in Araldite following glutaraldehyde fixation and unpostfixed in osmium tetroxide. Lupin leghemoglobin is a stable and abundant protein which allows a conventional method to be safely used for localization of leghemoglobin. Labeling of leghemoglobin was specifically confined to the cytosol matrix and nuclei. Gold particles were never observed in the peribacteroidal spaces nor in the cytoplasmic organelles of the infected cells. Decrease of leghemoglobin was observed when the plants were grown with 10.7 micromolar and 21.4 micromolar of nitrate.  相似文献   
885.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   
886.
Fructose 2,6-bisphosphate hydrolyzing enzymes in higher plants   总被引:1,自引:1,他引:0       下载免费PDF全文
The phosphatases that hydrolyze fructose 2,6-bisphosphate in a crude spinach (Spinacia oleracea L.) leaf extract were separated by chromatography on blue Sepharose, into three fractions, referred to as phosphatases I, II, and III, which were further purified by various means. Phosphatase I hydrolyzed fructose 2,6-bisphosphate, with a Km value of 30 micromolar, to a mixture of fructose 2-phosphate (90%) and fructose 6-phosphate (10%). It acted on a wide range of substrates and had a maximal activity at acidic pH. Phosphatase II specifically recognized the osyl-link of phosphoric derivatives and had more affinity for the β-anomeric form. Its apparent Km for fructose 2,6-bisphosphate was 30 micromolar. It most likely corresponded to the fructose-2,6-bisphosphatase described by F. D. Macdonald, Q. Chou, and B. B. Buchanan ([1987] Plant Physiol 85: 13-16). Phosphatase III copurified with phosphofructokinase 2 and corresponded to the specific, low-Km (24 nanomolar) fructose-2,6-bisphosphatase purified and characterized by Y. Larondelle, E. Mertens, E. Van Schaftingen, and H. G. Hers ([1986] Eur J Biochem 161: 351-357). Three similar types of phosphatases were present in a crude extract of Jerusalem artichoke (Helianthus tuberosus) tuber. The concentration of fructose 2,6-bisphosphate decreased at a maximal rate of 30 picomoles per minute and per gram of fresh tissue in slices of Jerusalem artichoke tuber, upon incubation in 50 millimolar mannose. This rate could be accounted for by the maximal extractable activity of the low-Km fructose-2,6-bisphosphatase. A new enzymic method for the synthesis of β-glucose 1,6-bisphosphate from β-glucose 1-phosphate and ATP is described.  相似文献   
887.
The transfer of genetic material into soybean tissue was accomplished by using an avirulent strain of Agrobacterium tumefaciens which contained the binary vector pGA482. The method used for transformation requires no tissue culture steps as it involves the inoculation of the plumule, cotyledonary node, and adjacent cotyledon tissues of germinating seeds. The identification of neomycin phosphotransferase (NPT) II enzyme activity in the tissues of 16 (R0) soybean plants indicated that the plant expressible Nos-NPT II gene, contained within the T-DNA region from pGA482, had been transferred at least into somatic tissues. Putative transformed R0 soybean plants were advanced to produce R1 plants which were also assayed for the presence of the transferred Nos-NPT II gene. The combined results of these assays indicated that about 0.7% of the surviving inoculated seeds yielded transformed tissues in the R0 plant, and that about 1/10 of these plants yielded transformed R1 plants. The presence of the Nos-NPT II gene in DNAs isolated from both R0 and R1 plant was demonstrated by using genomic blot hybridization and polymerase chain reaction methods. Integration of this gene into the soybean genome was demonstrated for three R1 soybean plants.  相似文献   
888.
14C-Ethylene was metabolized by etiolated pigweed seedlings (Amaranthus retroflexus L.) in the manner similar to that observed in other plants. The hormone was oxidized to 14CO2 and incorporated into 14C-tissue components. Selected cyclic olefins with differing abilities to block ethylene action were used to determine if ethylene metabolism in pigweed is necessary for ethylene action. 2,5-Norbornadiene and 1,3-cyclohexadiene were effective inhibitors of ethylene action at 800 and 6400 microliters per liter, respectively, in the gas phase, while 1,4-cyclohexadiene and cyclohexene were not. However, all four cyclic olefins inhibited the incorporation and conversion of 14C-ethylene to 14CO2 by 95% with I50 values below 100 microliters per liter. The results indicate that total ethylene metabolism does not directly correlate with changes in ethylene action. Additionally, the fact that inhibition of ethylene metabolism by the cyclic olefins did not result in a corresponding increase in ethylene evolution indicates that ethylene metabolism does not serve to significantly reduce endogenous ethylene levels.  相似文献   
889.
The interaction between carbon substrates and O2 and their effects on nitrogenase activity (C2H2) were examined in detached nodules of pea (Pisum sativum L. cv “Sparkle”). The internal O2 concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O2 for 2 hours resulted in a 2- to 10-fold increase in internal O2, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O2 was lowered. Nitrogenase activity was stimulated by succinate but only at high external O2. Oxygen uptake increased linearly with external O2 but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O2 concentration within detached nodules.  相似文献   
890.
The mechanism of ozone-mediated plant injury is not known but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with electrochemical detection, the 8-hydroxy-2′-deoxyguanosine (8-OHdG) content of a DNA enzymatic digest can be sensitively quantitated. Beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.) were treated with an ozone regime that caused acute injury. Chloroplast DNA was obtained from plants harvested either immediately after ozone treatment or 24 hours later. Ozone-exposed plants in general had nearly two-fold higher levels of 8-OHdG as compared to control plants. In vitro treatment of DNA in buffer solution with ozone did not cause formation of 8-OHdG in DNA, even though ozone did react directly with the macromolecule per se. Exposure of isolated, illuminated chloroplasts to ozone caused nearly a seven-fold increase in the amount of 8-OHdG in the chloroplast DNA as compared to none-ozone-exposed chloroplasts. These results suggest that ozone exposure to plants causes formation of enhanced levels of oxygen free radicals, thus mediating formation of 8-OHdG in chloroplast DNA. The reaction of ozone with DNA per se did not cause formation of 8-OHdG. Therefore, it is the interaction of ozone with plant cells and isolated chloroplasts which mediates oxygen free radical formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号