首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   4篇
  国内免费   30篇
  80篇
  2023年   5篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2010年   3篇
  2009年   2篇
  2008年   10篇
  2007年   9篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1994年   2篇
  1988年   1篇
排序方式: 共有80条查询结果,搜索用时 0 毫秒
1.
环境中生物膜的菌群结构与污染物降解特性   总被引:1,自引:0,他引:1  
生物膜是细菌最常见的生长方式。结构有序、功能分化的生物膜群落为内部细菌提供在不利环境中生存的庇护,其环境功效也日益受到关注。本文综述了多种环境中微生物与不同材料表面相互作用、进而发展为生物膜的机制;介绍了环境工程领域中生物膜的先锋菌种和菌群结构动态变化;介绍了生物膜在污染环境中的抗逆与降解特性。  相似文献   
2.
目的:通过在培养基中添加葡萄糖的方法,提高转基因鱼腥藻的产量和人肿瘤坏死因子(hTNF)-α的表达率。方法:在葡萄糖浓度为0~300mmol/L的范围内,进行了转hTNF-α鱼腥藻IB02的摇瓶混合营养培养,用比浊法和酶联免疫法测定转基因鱼腥藻的生长和hTNF-α的表达。结果:添加葡萄糖的藻液最高生长密度是未添加葡萄糖的3.5倍,且hTNFa的表达率也提高至4倍。结论:在各种葡萄糖浓度下,葡萄糖的利用都不明显。  相似文献   
3.
材料表面特征对生物膜形成的影响及其应用   总被引:1,自引:0,他引:1  
生物膜是微生物细胞粘附于材料表面的群体性生长方式。在实践应用中,有目的地调控微生物在材料表面的成膜进程具有重要意义。本文概述了生物膜在材料表面的形成机制及其影响因素,综述了材料表面的电荷特征、亲疏水性、形貌模式和功能性化学修饰等物化特性对细胞粘附和生物膜形成的影响,并介绍了目前在不同实际应用场景中抑制成膜和促进成膜材料的研发现状。  相似文献   
4.
本研究旨在探究水牛(Bubalus bubalis)载脂蛋白B基因(ApoB)在地中海水牛群体中的遗传多态性,并与地中海水牛泌乳性状进行关联分析,筛选水牛产奶性状分子标记。本研究以350头地中海纯种奶水牛为研究对象,利用直接测序法和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)法筛选基因多态性(single nucleotide polymorphisms, SNPs)与基因分型,并进一步分析单倍型与泌乳性状的相关性。结果显示,在地中海水牛群体ApoB基因中筛选到10个SNPs,分别位于启动子(g.-1718A>G、g.-1823G>C和g.-2063A>C)、第7内含子(g.8105G>A)、第26内含子(g.30643G>A)、第5外显子(g.5903G>A)、第26外显子(g.30879T>C、g.33638A>C和g.37375G>A)和第29外显子(g.40787A>G)区域。10个SNPs位点多态信息含量均大于0.25且小于0.5,属于中度多态。其中g.-1718A>G、g.-1823G>...  相似文献   
5.
结直肠癌(colorectal cancer,CRC)是全球范围内最常见的消化道恶性肿瘤之一,鉴于基因的异常表达在CRC发病机制中的关键作用,本研究旨在开发一种多基因预后风险预测模型以对CRC患者的生存结果进行分层和预测。在3个独立的转录组数据集中鉴定人类CRC肿瘤组织样本和正常结直肠组织样本之间的显著差异表达基因(differentially expressed genes,DEGs);基于219个重叠的DEGs,通过单因素Cox回归分析鉴定出31个具有预后价值的基因;采用LASSO Cox回归分析构建一个由13个基因组成的预后模型,其预后预测效果通过KM(Kaplan-Meier)生存分析和时间依赖性ROC分析在验证集中得到验证。多因素Cox回归分析表明,基于该模型的风险评分可以作为CRC患者生存结局[包括总生存期(overall survival,OS)、无病生存期(disease free survival,DFS)和疾病特异性生存期(disease special survival,DSS)]的独立预测因子。功能分析表明,该模型与CRC患者的免疫状态和化疗反应密切相关。此外,...  相似文献   
6.
ABC基因家族编码一类定位于生物膜的转运蛋白,参与多种物质的转运,在植物生长发育和适应胁迫等生命活动中发挥重要作用。通过生物信息学方法对建兰ABC基因家族成员进行全基因鉴定,并基于转录组数据和实时荧光定量PCR技术(RT-qPCR)分析其在建兰花发育过程中的表达模式。结果表明,建兰基因组中共存在121个可分为8个亚族的ABC基因。所有的建兰ABC基因均具有至少1个保守的核苷酸结合结构域。建兰ABC基因家族成员不均匀分布于19条染色体上,2号和8号染色体上成员数目最多。串联重复事件是导致建兰ABC基因家族扩张的主要原因。建兰ABC基因启动子序列上存在多种环境和激素响应元件。CeABCB6、CeABCB30、CeABCG3、CeABCG54和CeABCI7基因的表达水平与建兰主要花香物质的释放量呈正相关。本研究为后续了解建兰ABC基因的功能奠定基础,并为建兰花香研究提供基因资源。  相似文献   
7.
吸收营养物质是植物根系的主要生理功能。氮素吸收是植物体内氮代谢的第一步, 也是最关键的一步。为了全面地认识亚高山针叶林在全球气候变化背景下对两种主要无机氮(NH4+和NO3-)吸收特点的变化, 该研究以川西亚高山针叶林优势树种——云杉(Picea asperata)和岷江冷杉(Abies fargesii var. faxoniana)为材料, 通过红外辐射加热器模拟增温, 利用非损伤微测技术(non-invasive micromeasurement technology)研究了这两个树种吸收NH4+和NO3-特点的变化, 同时还探究了NH4+和NO3- 之间的相互作用对植物吸收这两种离子的影响。研究结果显示: 在云杉根系中, NH4+和NO3-的最大吸收速率分别发生在距离根尖最顶端17-18 mm区域和17 mm处, 而岷江冷杉对这两种离子的最大吸收速率分别发生在距离根尖顶端11 mm和11.5 mm处。增温对云杉和岷江冷杉根系吸收NH4+和NO3-有促进作用。在增温条件下, NO3-能够促进云杉根系对NH4+的吸收, 而NH4+则抑制了其对NO3-的吸收。无论是否增温, 岷江冷杉对NH4+的吸收都不受NO3-的影响, 而在增温条件下, NH4+会抑制岷江冷杉对NO3-的吸收。  相似文献   
8.
诺卡氏菌属GS-17(Nocardia sp.GS-17)的耐热茁霉多糖酶(Pullulanase EC.3.2.1.41)的粗酶液经中空纤维柱超滤浓缩、羟基磷灰石柱层析和Pullulan-Sepharose 6B亲和层析,得到凝胶电泳均一的纯酶,比活提高264倍.酶作用最适温度为55℃,最适PH6.2,分子量140000,等电点pI为6.0.该酶水解茁霉多糖、支链淀粉和可溶性淀粉,但不水解糖原.酶在50℃作用于茁霉多糖的米氏常数K_m为0.90mg/ml,最大反应速度V_(max)为57μmol·min~(-1)·mg~(-1).Zn~(2 )、Fe~(3 )、Hg~(2 )、Cu~(2 )、Pb~(2 )和环状糊精对酶有抑制作用,Ca~(2 )对酶有激活作用.经蛋白质侧链化学修饰研究表明,色氨酸残基位于酶的活性位区.该酶是由1129个氨基酸残基组成的单肽链,酶的N末端序列经测定为:Ala-Gly-His-Gly-Pro-Asp-Val-Gln-Asp-Gly-  相似文献   
9.
对分离自血液标本的1株碳青霉烯类耐药大肠埃希菌(Escherichia coli)SCNJ06进行特征分析,以期为临床耐药菌株感染的防治提供理论参考。采用全基因组测序以及生物信息学分析,该菌株属于序列型167(ST167),含有11种耐药基因,分别是rmtB、aph(3″)-Ib、aph(6)-Id、bla_(NDM-5)、bla_(TEM-1B)、bla_(CTX-M-55)、fosA3、floR、sul2、tet(A)和mdf(A)。其中,bla_(NDM-5)位于IncX3型质粒pNDM5_SCNJ06上,mdf(A)位于染色体上,其余耐药基因位于IncFII型质粒prmtB_SCNJ06上。接合试验显示,pNDM5_SCNJ06和prmtB_SCNJ06均能够发生接合转移。应加强抗菌药物临床应用管理和医院感染防控措施,重视细菌耐药监测工作。  相似文献   
10.
报道了秦岭兰科植物分布新记录属——蛤兰属(Conchidium Griff.),及属下新记录种——高山蛤兰[Conchidium japonicum(Maxim.)S. C. Chen&J. J. Wood]该属种也是河南省兰科植物新记录。文中对其进行详细的形态描述,并提供野外照片。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号