首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186403篇
  免费   94502篇
  国内免费   96292篇
  2023年   8280篇
  2022年   8691篇
  2021年   9299篇
  2020年   9141篇
  2019年   11191篇
  2018年   11519篇
  2017年   7936篇
  2016年   9063篇
  2015年   10332篇
  2014年   13613篇
  2013年   12567篇
  2012年   107805篇
  2011年   121695篇
  2010年   29569篇
  2009年   21956篇
  2008年   102113篇
  2007年   106038篇
  2006年   99382篇
  2005年   94546篇
  2004年   91641篇
  2003年   86929篇
  2002年   77161篇
  2001年   62017篇
  2000年   77370篇
  1999年   32674篇
  1998年   7198篇
  1997年   5459篇
  1996年   4657篇
  1995年   4403篇
  1994年   4577篇
  1993年   3783篇
  1992年   4360篇
  1991年   3846篇
  1990年   3776篇
  1989年   4294篇
  1988年   4269篇
  1987年   3922篇
  1986年   3736篇
  1985年   3578篇
  1983年   3393篇
  1959年   3879篇
  1958年   6824篇
  1957年   6798篇
  1956年   6073篇
  1955年   5733篇
  1954年   5439篇
  1953年   5173篇
  1952年   4656篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 91 毫秒
881.
Growth of wheat seedlings in the presence of the phytotoxin tagetitoxin produces pigment-deficient leaves of normal size and morphology whose cells contain only rudimentary plastids. We could not detect the accumulation of either the plastid-encoded large subunit or the nuclear-encoded small subunit of the chloroplast stromal enzyme ribulose 1,5-bisphosphate carboxylase (RuBPCase) in western blots of protein extracted from leaves of such seedlings. Sucrose gradient centrifugation profiles showed that plastid ribosomes were essentially absent in toxin-treated leaf tissue while cytoplasmic ribosomes were relatively unaffected. Northern blot analysis of RNA in toxin-treated leaves showed a deficiency of plastid ribosomal RNA (16S and 23S) as well as reduced levels of plastid mRNAs for the large subunit of RuBPCase and for the 32 kilodalton thylakoid QB polypeptide. Northern analysis also showed that the nuclear-encoded rbcS mRNA for the small subunit of RuBPCase is present in only trace amounts in toxin-treated leaves.  相似文献   
882.
Bromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3°C developed more freezing resistance than cells cultured at 3°C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [14C]leucine incorporation. Protein synthesis continued at 3°C, but net cell growth was stopped. Most of the major proteins detected at 23°C were synthesized at 3°C. However, some proteins were synthesized only at low temperatures, whereas others were inhibited. ABA showed similar effects on protein synthesis at both 23 and 3°C. Comparative electrophoretic analysis of [14C]leucine labeled protein detected the synthesis of 19, 21 and 47 kilodalton proteins in less than 8 hours after exposure to exogenous ABA. Proteins in the 20 kilodalton range were also synthesized at 3°C. In addition, a 31 kilodalton protein band showed increased expression in freezing resistant ABA treated cultures after 36 hours growth at both 3 and 23°C. Quantitative analysis of [14C]leucine labeled polypeptides in two-dimensional gels confirmed the increased expression of the 31 kilodalton protein. Two-dimensional analysis also resolved a 72 kilodalton protein enriched in ABA treated cultures and identified three proteins (24.5, 47, and 48 kilodaltons) induced by low temperature growth.  相似文献   
883.
Bensen RJ  Warner HR 《Plant physiology》1987,84(4):1102-1106
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.  相似文献   
884.
The activity of acifluorfen-methyl (AFM); methyl 5-(2-chloro-4-[trifluoromethyl] phenoxy)-2-nitrobenzoate in excised cucumber cotyledons (Cucumis sativus L.) was examined. AFM induced membrane disruption, was significantly greater when etiolated cotyledons were illuminated 16 hours at 150 microeinsteins per square meter per second photosynthetically active radiation versus incubation under illumination of 4-fold greater intensity. These results were unexpected since the loss of membrane integrity is initiated by photodynamic reactions. Untreated, etiolated cotyledons were not able to accumulate chlorophyll under the higher light intensity while control and herbicide treated cotyledons greened significantly under the lower intensity illumination suggesting that some process associated with greening stimulated AFM activity. Inhibition of greening by cycloheximide also reduced AFM activity. Intermittent lighting induced greening in AFM treated cotyledons without causing any detectable loss of plasmalemma integrity. Utilization of this system for pretreatment of cotyledons prior to continuous illumination revealed that activity was greater when tissue was greened in the presence of AFM than when herbicide treatments were made after a greening period of the same duration. The results indicate that the pigments in situ in etiolated tissue are sufficient, without greening, to initiate membrane disruption by AFM. However, greening increases the herbicidal efficacy greatly. Furthermore, the stimulation appears to be due to specific interactions between AFM and the developing plastid and is not attributable solely to an increase in endogenous photosensitizers.  相似文献   
885.
Coleoptiles and roots of 3-day-old seedlings from five cereal species (Triticum aestivum L., T. durum Desf., Hordeum vulgare L., Secale cereale L., and Triticale) respond to heat shock at 40°C by synthesizing a new set of 13 strong bands (as revealed by one-dimensional sodium dodecyl sulfate gel electrophoresis) as well as some 20°C proteins. Heat shock proteins (HSPs) belong to three different size groups: high molecular mass HSPs in the 103 to 70 kilodalton range, intermediate molecular mass HSPs in the 62 to 32 kilodalton range, and low molecular mass HSPs about 17 to 16 kilodalton in size. At the beginning of the heat shock coleoptiles show a reduced ability to synthesize intermediate molecular mass HSPs but after 4 hours at 40°C they exhibit fully developed HSP patterns identical to that found in roots. Synthesis of early HSPs declines after 7 hours of treatment followed by the appearance of a new set of 12 protein bands (late HSPs) in the ranges 99 to 83, 69 to 35, and 15 to 14 kilodaltons. After 12 hours at 40°C, three other late HSPs of 89, 45, and 38 kilodalton are induced. The induction of late HSPs after 7 hours at 40°C appears to be associated with an enhancement of radioactive methionine incorporation into proteins.  相似文献   
886.
We have examined the effect of gibberellic acid (GA3) on the distribution of the enzyme responsible for mobilizing storage triacylglycerol in aleurone cells of Hordeum vulgare L. cv Himalaya. Using cellular fractionation techniques, we find that, in cells that have not been exposed to hormone, neutral lipase activity is principally associated with a pellet containing the membranes of protein bodies. If the cells are exposed to GA3 for at least 1 hour, the majority of the lipase activity becomes associated with the lipid body fraction. The nature of the in vivo association between lipid bodies and protein bodies was examined using ultrarapid freezing followed by freeze-fracture electron microscopy. Our analysis indicates that the phospholipid monolayer surrounding the lipid body is directly continuous with the outer leaflet of the bilayer surrounding the protein body. Based on our data, we propose that lipase can be transferred from protein bodies (storage form) to lipid bodies (active form) by lateral diffusion within the plane of the fused phospholipid monolayer, and that the transfer can be controlled by gibberellic acid by an unknown mechanism.  相似文献   
887.
Wu MX  Wedding RT 《Plant physiology》1987,85(2):497-501
The effect of temperature in the range from 10 to 35°C on various characteristics of phosphoenolpyruvate carboxylase from the leaves of a CAM plant, Crassula argentea and a C4 plant Zea mays shows a number of different effects related to the environment in which these distinct types of metabolic specialization normally operate. The Arrhenius plot of Vmax for the two enzyme forms shows that the CAM enzyme has a linear increase with temperature while the C4 enzyme has an inflection at 27°C implying a conformational or aggregational change in the enzyme or a shift in reaction mechanism to one requiring a lower activation energy. The Arrhenius plot of Km for the two enzymes reveals the startling fact that at temperatures above 20°C an increasing temperature causes an increase in KmPEP for the CAM enzyme while the C4 enzyme displays a decreased Km as the temperature increases. The inhibitory effect of 5 millimolar malate also shows opposite trends for the two enzymes. For the CAM enzyme the percent inhibition by malate increases from essentially none at 15°C to 70% at 35°C. For the C4 enzyme the percent inhibition drops from about 60% at 20°C to 2% at 30°C. Similar opposite behavior of the two enzymes is found with the Ki for malate. Pretreatment at high temperatures for periods up to 2 hours was found to result in differences similar to those described above if the treated enzyme were subsequently assayed at 25°C.  相似文献   
888.
psbA in Synechocystis 6803 was found to belong to a small multigene family with three copies. The psbA gene family was inactivated in vitro by insertation of bacterial drug resistance markers. Inactivation of all three genes resulted in a transformant that is unable to grow photosynthetically but can be cultured photoheterotrophically. This mutant lacks oxygen evolving capacity but retains photosystem I activity. Room temperature measurements of chlorophyll a fluorescence induction demonstrated that the transformant exhibits a high fluorescence yield with little or no variable fluorescence. Immunoblot analyses showed complete loss of the psbA gene product (the DI polypeptide) from thylakoid membranes in the transformant. However, the extrinsic 33 kilodalton polypeptide of the water-splitting complex of photosystem II, is still present. The results indicate that assembly of a partial photosystem II complex may occur even in the absence of the intrinsic D1 polypeptide, a protein implicated as a crucial component of the photosystem II reaction center.  相似文献   
889.
The rate and sensitivity to inhibitors (KCN and salicylhydroxamic acid[SHAM]) of respiratory oxygen uptake has been investigated in photosynthetic organs of several freshwater aquatic plant species: six angiosperms, two bryophytes, and an alga. The oxygen uptake rates on a dry weight basis of angiosperm leaves were generally higher than those of the corresponding stems. Leaves also had a higher chlorophyll content than stems. Respiration of leaves and stems of aquatic angiosperms was generally cyanide-resistant, the percentage of resistance being higher than 50% with very few exceptions. The cyanide resistance of respiration of whole shoots of two aquatic bryophytes and an alga was lower and ranged between 25 and 50%. These results suggested that the photosynthetic tissues of aquatic plants have a considerable alternative pathway capacity. The angiosperm leaves generally showed the largest alternative path capacity. In all cases, the respiration rate of the aquatic plants studied was inhibited by SHAM alone by about 13 to 31%. These results were used for calculating the actual activities of the cytochrome and alternative pathways. These activities were generally higher in the leaves of angiosperms. The basal oxygen uptake rate of Myriophyllum spicatum leaves was not stimulated by sucrose, malate or glycine in the absence of the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP), but was greatly increased by CCCP, either in the presence or in the absence of substrates. These results suggest that respiration was limited by the adenylate system, and not by substrate availability. The increase in the respiratory rate by CCCP was due to a large increase in the activities of both the cytochrome and alternative pathways. The respiration rate of M. spicatum leaves in the presence of substrates was little inhibited by SHAM alone, but the SHAM-resistant rate (that is, the cytochrome path) was greatly stimulated by the further addition of CCCP. Similarly, the cyanide-resistant rate of O2 uptake was also increased by the uncoupler.  相似文献   
890.
The two glutamate synthases, NAD(P)H- and ferredoxin-dependent, from the green leaves of tomato plants (Lycopersicon esculentum L. cv Hellfrucht frühstamm) differed in their chemical properties and catalytic behavior. Gel filtration of NAD(P)H enzyme gave an apparent molecular size of 158 kilodalton, whereas the ferredoxin enzyme molecular size was 141 kilodalton. Arrhenius plots of the activities of the two enzymes showed that the NAD(P)H enzyme had two activation energies; 109.6 and 70.5 kilojoule per mole; the transition temperature was 22°C. The ferredoxin enzyme however, had only one activation energy; 56.1 kilojoule per mole. The respective catalytic activity pH optima for the NAD(P)H- dependent and the ferredoxin dependent enzymes were around 7.3 and 7.8. In experiments to evaluate the effects of modulators aspartate enhanced the NAD(P)H-linked activity, with a Ka value of 0.25 millimolar, but strongly inhibited that of the ferredoxin-dependent glutamate synthase with a Ki of 0.1 millimolar. 3-Phosphoserine was another inhibitor of the ferredoxin dependent enzyme with a Ki value of 4.9 millimolar. 3-Phosphoglyceric acid was a potent inhibitor of the ferredoxin-dependent form, but hardly affected the NAD(P)H-dependent enzyme. The results are discussed and interpreted to propose different specific functions that these activities may have within the leaf tissue cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号