首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1190207篇
  免费   94957篇
  国内免费   98673篇
  2023年   8461篇
  2022年   9501篇
  2021年   10708篇
  2020年   9977篇
  2019年   11202篇
  2018年   11565篇
  2017年   8034篇
  2016年   9066篇
  2015年   10347篇
  2014年   13747篇
  2013年   12656篇
  2012年   107860篇
  2011年   121739篇
  2010年   29581篇
  2009年   21993篇
  2008年   102128篇
  2007年   106063篇
  2006年   99416篇
  2005年   94575篇
  2004年   91677篇
  2003年   86963篇
  2002年   77206篇
  2001年   62064篇
  2000年   77465篇
  1999年   32789篇
  1998年   7335篇
  1997年   5585篇
  1996年   4791篇
  1995年   4569篇
  1994年   4712篇
  1993年   3938篇
  1992年   4476篇
  1991年   3970篇
  1990年   3890篇
  1989年   4389篇
  1988年   4300篇
  1987年   3972篇
  1986年   3757篇
  1985年   3610篇
  1983年   3397篇
  1959年   3890篇
  1958年   6835篇
  1957年   6806篇
  1956年   6081篇
  1955年   5733篇
  1954年   5440篇
  1953年   5174篇
  1952年   4657篇
  1951年   4278篇
  1950年   3511篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
在制备果蝇唾液腺染色体的过程中,我们吸取前人经验,在制片方法上加以改进并采用复合染料染色,结果染色体分散,横纹清楚,可长期保存,为学生提供了理想的教学切片。现将方法介绍如下: 取材取体型大、行动缓慢,爬在培养瓶壁上的三  相似文献   
992.
(一)目的通过观察、记录、分析、讨论和教师的必要说明,使学生了解:(1)鸟类的多样性;(2)鸟类的形态结构和生活习性(包括食性)各异,这都是同其适应性相联系的;(3)关于鸟类中的留鸟、候鸟和迁徙的知识。 (二)过程 1.准备尽可能多准备一些形态不同的活鸟和鸟类剥制标本。 (1)鸟类标本室:备有家鸽、鹦鹉、鹌鹑、黑尾蜡嘴雀、锡嘴雀、燕雀、麻雀、蒙古百灵,太平鸟、黄胸鹀、三道眉草鹀、大山雀、朱顶雀、黄  相似文献   
993.
巨噬细胞是机体保卫系统的细胞,当外界异物入侵以后它可向异物集中进行吞噬活动。在小鼠腹腔内塞入异物(圆形盖片)后可见巨噬细胞集中爬满盖片上,再注入墨汁。巨噬细胞即吞噬炭末微粒,其形态更为清晰可辨。本方法可作为教学示范或课外活动用以启发学生理解机体的保卫反应。其方法步骤如下: (1)将小白鼠放入瓶内用乙醚麻醉(勿麻醉致死)后取出小鼠使仰位,四肢用绳子固定于解剖板上。  相似文献   
994.
Host-plasmid interactions were studied for the broad-host range plasmid, pTJS26, a derivative of RK2. To isolate host and plasmid contributions to the growth dynamics and plasmid stability, separate experiments were performed with host and recombinant cells for two different gram-negative hosts, Pseudomonas putida and Escherichia coli, at two different temperatures, 30 and 37 degrees C. At the lower temperature (30 degrees C) the growth kinetics were not affected by the plasmid, but plasmid instability was observed. At the higher temperature (37 degrees C) growth rates and yields were lower than that for the hosts, but the plasmid was stable. This behavior can be explained by a combination of two phenomena. First, the copy number control mechanism may be temperature sensitive and, second, plasmid segregation may be inefficient. For both E. coli and P. putida the growth dynamics of the recombinant system was dictated by the presence of the plasmid.  相似文献   
995.
An extractive fermentation system using immobilized yeast cells was developed to study the ethanol production at high sugar concentrations. Organic acids were used as extracting solvents of ethanol and their toxicity was tested in free and k-carrageenan entrapped cell preparations. Immobilization seems to protect cells against solvent toxicity, when long-chain organic acids, e.g., oleic acid, were used, probably due to steric and diffusional limitations, the free cells not being viable at high oleic acid concentrations. The entrapped cells also present a higher metabolic activity than their free counterparts at high glucose concentrations. A solution of 300 g/L of glucose was totally fermented by the immobilized yeast cells, which when free cannot normally convert more than 200 g/L. In situ recovery of ethanol by oleic acid in a batch immobilized cell system led to higher ethanol productivities and to the fermentation of 400 g/L, when an oleic acid/medium ratio of 5 was used.  相似文献   
996.
Cost estimates have been prepared for commercial-scale production of ajmalicine-rich Catnaranthus roseus biomass using plant cell culture. At the current state of the technology the cost would be approximately $7.30/lb dry biomass ($3215/kg ajmalicine). Naturally-grown C. roseus roots have a 50% lower ajmalicine concentration but would cost only ca. $0.70/lb ($619/kg ajmalicine). The principal reason for the high cost of the plant cell culture route is not the slow specific growth rate (0.35 day(-1)), but rather the slow specific product accumulation rate (0.26 mg/g day). This rate will have to be increased by a factor of 40 to make the process competitive.  相似文献   
997.
High methanol concentrations have a negative effect on the growth rate and the biomass yield of growth transients induced by methanol pulses in continuous cultures of Methylomonas L3. The physiological basis of this effect is investigated by measuring the effect of the methanol pulse on the cell energy charge (EC) and ATP, ADP, and AMP concentrations, and by comparing the results of the pulse transients against an unstructured model. The methanol pulse is shown to lead to increased values of the cell EC and ATP concentration, and thus, inhibition and reduced availability of biosynthetic energy are excluded as causes of inhibition. When the biomass and methanol profiles of the transient experiments are compared in phase-plane diagrams against computer simulations based on the model, satisfactory agreement between experimental data and model predictions is found in single-substrate, high-dilution-rate experiments. Conversely, poor agreement between experimental data and simulation results indicates a more severe growth inhibition than the model predicts at low dilution rates and a less severe one in mixed-substrate experiments. Based on these findings and other relevant physiological information, we propose that the large variations in the negative effect of methanol on growth result from the fact that cells accumulate methanol to widely different concentrations depending on their physiological state. In their effort to detoxify from the high intracellular methanol and formaldehyde concentrations, cells oxidize considerably more methanol than they can incorporate into biomass. This leads to a useless ATP surplus, which the cells must hydrolyze without doing any useful biosynthetic work, and this results in lower biomass yields.  相似文献   
998.
999.
The relationship between pressure and temperature as it affects microbial growth and metabolism has been examined only for a limited number of bacterial species. Because many newly-discovered, extremely thermophilic bacteria have been isolated from pressurized environments, this relationship merits closer scrutiny. In this study, the extremely thermophilic bacterium, Sulfolobus acidocaldarius, was cultured successfully in a hyperbaric chamber containing helium and air enriched with 5% carbon dioxide. Over a pressure range of approximately 1-120 bar and a temperature range of 67-80 degrees C, growth was achieved in a heterotrophic medium with the air mixture at partial pressures up to 3.5 bar. Helium was used to obtain the final, desired incubation pressure. No significant growth was noted above 80 degrees C over the same range of hyperbaric pressures, or at 70 degrees C when pressure was applied hydrostatically. Growth experiments conducted under hyperbaric conditions may provide a means to study these bacteria under simulated in situ conditions and simultaneously avoid the complications associated with hydrostatic experiments. Results indicate that hyperbaric helium bioreactors will be important in the study of extremely thermophilic bacteria that are isolated from pressurized environments.  相似文献   
1000.
Cycling in feed substrate concentration and dilution rate is examined as a means of modifying the final fate of a mixed culture. It is shown for the case where the specific growth rate of one species is always greater than that of the second that no cycling strategy will provide the desired extinction of the faster growing species unless time delay is included in the modeling. To account for the time lag in adjusting organism metabolic activities to environmental changes, an adaptability parameter is introduced. Numerical simulations are carried out and an operating diagram indicating the conditions under which the desired extinction occurs is constructed. Cycling in feed substrate concentration and dilution rate are both found to produce the desired result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号