排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
以抗旱品种‘晋麦47’和干旱敏感品种‘郑引1号’为材料,通过室内水培试验研究了外源海藻糖对PEG渗透胁迫下小麦叶片净光合速率、1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)和1,5-二磷酸核酮糖羧化酶/加氧酶活化酶(RCA)含量和相关基因表达特性的影响。结果表明:(1)外源海藻糖和渗透胁迫均能显著增加2个小麦品种叶片海藻糖含量。(2)渗透胁迫显著降低了2个品种小麦叶片的净光合速率,而外源海藻糖能显著缓解受胁迫小麦叶片净光合速率的降低幅度。(3)渗透胁迫仅使‘郑引1号’Rubisco大亚基基因(rbcL)相对表达量及相应蛋白含量显著降低;渗透胁迫显著降低了小麦RCAα和β亚基基因相对表达量,并显著降低RCA蛋白含量,而外源海藻糖不能缓解RCA蛋白含量的降低;渗透胁迫显著降低了Rubisco总活性、初始活性、活化状态及RCA活性,而外源海藻糖则能显著缓解上述酶活性的下降。(4)小麦叶片净光合速率与其rbcL、RCAα和β亚基基因相对表达量及Rubisco总活性、初始活性、活化状态及RCA活性均呈极显著正相关关系。研究发现,在渗透胁迫条件下,外源海藻糖主要从翻译后层面对小麦叶片Rubisco和RCA的活性发挥显著保护作用,从而缓解了小麦净光合速率的降低。 相似文献
22.
采用盆栽试验,设置0、20%、40%、60%和80%遮阴度5种遮阴处理,研究遮阴对刻叶紫堇、伏生紫堇、紫堇和黄堇4种紫堇属植物叶绿素含量、光合特性和叶绿素荧光参数的影响,以加快其在园林方面的应用。结果表明: 随着遮阴度的提高,4种植物叶绿素a、叶绿素b和叶绿素(a+b)总量不断增加,刻叶紫堇在80%遮阴处理均达到最大,而伏生紫堇、紫堇和黄堇在60%遮阴处理达到最大;叶绿素a/b、光饱和点、光补偿点和暗呼吸速率的变化趋势呈相反的趋势。4种植物中,刻叶紫堇在80%遮阴处理下,伏生紫堇、紫堇和黄堇在60%遮阴度下各叶绿素荧光参数达到最大。4种植物耐阴性大小为刻叶紫堇>伏生紫堇>紫堇>黄堇。刻叶紫堇在80%遮阴处理,以及伏生紫堇、紫堇和黄堇在60%遮阴处理下光能利用率最大,光合能力最强,最有利于植物的生长。 相似文献
23.
为研究不同强度脉冲电磁场(pulse electromagnetic fields,PEMFs)对大鼠颅骨成骨细胞(rat skull osteoblasts,OB)增殖及成熟矿化的影响,将大鼠颅骨成骨细胞随机分为 7 组. 检测大鼠颅骨成骨细胞的增殖,细胞内碱性磷酸酶(ALP)活性变化,细胞沉积钙盐的情况,组织化学染色以及成骨细胞内标志性分子表达量的改变.结果显示,0.6 mT组促细胞增殖作用最强(P <0.01);0.6 mT、1.8 mT、3.0 mT和3.6 mT均能提高ALP活性,其中0.6 mT ALP活性最高(P<0.01);在磁场处理4 ~12 d时细胞沉积钙盐逐渐增加,6种强度的脉冲电磁场均能促进钙盐沉积,尤以0.6 mT水平最高; ALP 染色、茜素红染色0.6 mT 组均显著高于对照组(P<0.01);0.6 mT组 Bmp-2和Collagen-1 mRNA 的表达明显(P<0.01)高于对照组,磁场处理组Rankl mRNA 的表达均比对照组低. 0.6 mT 50 Hz 脉冲电磁场是促进成骨细胞增殖和矿化成熟的最佳参数,这为采用脉冲电磁场治疗骨质疏松症提供了治疗参数的基础支持. 相似文献
24.
目的:综合多种急性早幼粒细胞白血病(APL)分子遗传学检测方法,比较染色体核型分析(CC)检测方法在临床诊疗中的应用优势.方法:采用急性早幼粒细胞白血病(APL)临床诊断中常用的分子生物学(反转录筑巢式聚合酶链反应--Rf-nest-PCR)、细胞形态学和荧光原位杂交(FISH)方法分别对83例来本院初、复诊的APL患者的骨髓标本进行分析,将结果分别与染色体核型分析(CC)的结果进行比较.结果:83例APL患者中染色体诊断出现典型的t(15;17)异位为79例,占总人数的95.2%;2例出现复杂染色体变化即t(15;17)+7和t(15;17)+9,占总人数的2.4%;1例出现t(11;17)异-位,占总人数的1.2%;1例为正常.PCR对融合基因检测阳性率为92.8%;细胞形态学检测结果阳性率为92.8%;荧光原位杂交阳性率为97.6%.结论:染色体核型分析是对APL疾病诊断的可靠法,特别是在对一些复杂核型的判断上相对于PCR和细胞形态学以及FISH的检测方法上均有很大优势,是其他诊断方法无法取代的. 相似文献
25.
黑麦属植物具有许多有益基因,将其导入普通小麦对于拓宽其遗传基础具有重要作用。概述了黑麦属的分类及分布,分析了黑麦属染色体的C分带核型、DNA重复序列及其与小麦染色体间的部分同源关系,论述了黑麦有益基因导入小麦的途径及其在小麦改良中的应用,阐明了全面挖掘黑麦有益基因是未来努力的方向。 相似文献