首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   43篇
  国内免费   66篇
  646篇
  2021年   1篇
  2017年   2篇
  2014年   6篇
  2013年   11篇
  2012年   56篇
  2011年   52篇
  2010年   10篇
  2009年   1篇
  2008年   58篇
  2007年   56篇
  2006年   48篇
  2005年   65篇
  2004年   49篇
  2003年   40篇
  2002年   40篇
  2001年   22篇
  2000年   37篇
  1999年   25篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   10篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1983年   4篇
  1959年   1篇
  1958年   4篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1952年   6篇
  1951年   2篇
  1950年   1篇
  1937年   1篇
排序方式: 共有646条查询结果,搜索用时 0 毫秒
71.
Phenylalanine hydroxylase (PAH) gene mutations were investigated in 23 (46 alleles) unrelated phenylketonuria (PKU) patients in Cukurova region. First, all exons of PAH gene were screened by denaturing high performance liquid chromatography (DHPLC), and then, the suspicious samples were analyzed by direct sequencing technique. Consequently, the following results were obtained: IVS10-11g-->a splicing mutation in 27/46 (58.7%), R261Q mutation in 7/46 (15.2%) and E178G, R243X, R243Q, P281L, Y386C, R408W mutations, each found in the frequency of 2/46 (4.3%). In many countries, Arginine mutations have the highest frequency among PAH gene mutations in PKU patients. Although, CpG dinucleotids are effective in mutations resulting in arginine changes, this finding originated from the studies on the causes of mutations rather than the studies on the importance of arginine amino acid. In our analyses, we have detected that a majority of mutations causing a change in arginine and other amino acids concentrated in exon 7 comprising the catalytic domain (residues 143-410) of PAH gene. Several studies has emphasized the role of arginine amino acid; with the following outcomes; arginine repetition is significant for RNA binding proteins, and for histon proteins in eukaryotic gene expression, and also arginine repetition occurring in the structure of signal recognition particle's (SRPs) as a consequence of post-translational processes is very important in terms of gene expression. Therefore, the role of arginine amino acid in PAH gene is rather remarkable in that it shows the role of amino acids in the protein/RNA interaction that has started in the evolutionary process and is still preserved and maintained in the motif formation of active domain structure due to its strong binding properties. Thus, such properties imply that both arginine amino acid and exon 7 is of great significance with regards to the structure and function of the PheOH enzyme.  相似文献   
72.
73.
74.
The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes, but the oxidation results in ribosomal stalling and dysfunction, followed by decreased levels of functional protein as well as the production of truncated proteins that do not undergo proper folding and may result in protein aggregation within the cell. Ribosomal dysfunction may also signal apoptosis by p53-independent pathways. There are very few reports on interventions that reduce RNA oxidation, one interesting observation being a reduction in RNA oxidation by ingestion of raw olive oil. High urinary excretion of 8-oxo-guanosine, a biomarker for RNA oxidation, is highly predictive of death in newly diagnosed type 2 diabetics; this demonstrates the clinical relevance of RNA oxidation. Taken collectively the available data suggest that RNA oxidation is a contributing factor in several diseases such as diabetes, hemochromatosis, heart failure, and β-cell destruction. The mechanism involves free iron and hydrogen peroxide from mitochondrial dysfunction that together lead to RNA oxidation that in turn gives rise to truncated proteins that may cause aggregation. Thus RNA oxidation may well be an important novel contributing mechanism for several diseases.  相似文献   
75.
Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology.  相似文献   
76.
77.
Both top-down and bottom-up processes influence herbivore populations, and identifying dominant limiting factors is essential for applying effective conservation actions. Mountain caribou are an endangered ecotype of woodland caribou (Rangifer tarandus caribou) that have been declining, and unsustainable predation has been identified as the proximate cause. To investigate the role of poor nutrition, we examined the influence of sex, season, age class, and available suitable habitat (i.e., old-growth forest>140 years) per caribou on bone marrow fat content of caribou that died (n = 79). Sex was the only strong predictor of marrow fat. Males that died during and post rut had lower marrow fat than females or males at other times of year. Old-growth abundance per caribou, season, and age class did not predict marrow fat. Caribou killed by predators did not have less marrow fat than those that died in accidents, suggesting that nutritionally stressed caribou were not foraging in less secure habitats or that predators selected nutritionally stressed individuals. Marrow fat in endangered and declining populations of mountain caribou was similar to caribou in other, more viable populations. Our results support previous research suggesting that observed population declines of mountain caribou are due to excessive predation that is not linked to body condition.  相似文献   
78.
Fine-mapping studies on four QTLs, qDTY(2.1), qDTY(2.2), qDTY(9.1) and qDTY(12.1), for grain yield (GY) under drought were conducted using four different backcross-derived populations screened in 16 experiments from 2006 to 2010. Composite and bayesian interval mapping analyses resolved the originally identified qDTY(2.1) region of 42.3 cM into a segment of 1.6 cM, the qDTY(2.2) region of 31.0 cM into a segment of 6.7 cM, the qDTY(9.1) region of 32.1 cM into two segments of 9.4 and 2.4 cM and the qDTY(12.1) region of 10.6 cM into two segments of 3.1 and 0.4 cM. Two of the four QTLs (qDTY(9.1) and qDTY(12.1)) having effects under varying degrees of stress severity showed the presence of more than one region within the original QTL. The study found the presence of a donor allele at RM262 within qDTY(2.1) and RM24334 within qDTY(9.1) showing a negative effect on GY under drought, indicating the necessity of precise fine mapping of QTL regions before using them in marker-assisted selection (MAS). However, the presence of sub-QTLs together in close vicinity to each other provides a unique opportunity to breeders to introgress such regions together as a unit into high-yielding drought-susceptible varieties through MAS.  相似文献   
79.
In Saccharomyces cerevisiae, the Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway is a nutrient-sensitive signaling cascade that regulates vegetative growth, carbohydrate metabolism, and entry into meiosis. How this pathway controls later steps of meiotic development is largely unknown. Here, we have analyzed the role of the Ras/cAMP/PKA pathway in spore formation by the meiosis-specific manipulation of Ras and PKA or by the disturbance of cAMP production. We found that the regulation of spore formation by acetate takes place after commitment to meiosis and depends on PKA and appropriate A kinase activation by Ras/Cyr1 adenylyl cyclase but not by activation through the Gpa2/Gpr1 branch. We further discovered that spore formation is regulated by carbon dioxide/bicarbonate, and an analysis of mutants defective in acetate transport (ady2Δ) or carbonic anhydrase (nce103Δ) provided evidence that these metabolites are involved in connecting the nutritional state of the meiotic cell to spore number control. Finally, we observed that the potential PKA target Ady1 is required for the proper localization of the meiotic plaque proteins Mpc70 and Spo74 at spindle pole bodies and for the ability of these proteins to initiate spore formation. Overall, our investigation suggests that the Ras/cAMP/PKA pathway plays a crucial role in the regulation of spore formation by acetate and indicates that the control of meiotic development by this signaling cascade takes places at several steps and is more complex than previously anticipated.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号