首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   5篇
  国内免费   8篇
  2023年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   14篇
  2011年   10篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
21.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   
22.
23.
Collagen II (CII)-induced arthritis in DBA/1j mice is mediated by both CII-reactive T cells and anti-CII Ab-producing B cells. To determine the relative role of these processes in the development of arthritis, we specifically eliminated CII-reactive T cells by treating the mice with CII-pulsed syngeneic macrophages that had been transfected with a binary adenovirus system. These macrophages express murine Fas ligand in a doxycycline-inducible manner with autocrine suicide inhibited by concomitant expression of p35. The mice were treated i.v. with four doses of CII-APC-AdFasLp35Tet or a single dose of AdCMVsTACI (5 x 10(9) PFU), or both simultaneously, beginning 2 wk after priming with CII in CFA. Treatment with CII-APC-AdFasLp35Tet alone or in combination with a single dose of AdCMVsTACI prevented the development of CII-induced arthritis and T cell infiltration in the joint. The elimination of T cells was specific in that a normal T cell response was observed on stimulation with OVA after treatment with CII-APC-AdFasLp35Tet. Treatment with AdCMVsTACI alone prevented production of detectable levels of circulating anti-CII autoantibodies and reduced the severity of arthritis but did not prevent its development. These results indicate that the CII-reactive T cells play a crucial role in the development of CII-induced arthritis and that the anti-CII Abs act to enhance the development of CII-induced arthritis.  相似文献   
24.
25.
The neurotoxic effects and influence of beta-amyloid peptide (Aβ)1–42 on membrane lipids and nicotinic acetylcholine receptors (nAChRs) in human SH-SY5Y neuroblastoma cells were investigated in parallel. Exposure of the cultured cells to varying concentrations of Aβ1–42 evoked a significantly decrease in cellular reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyl tetrazolium bromide), together with enhanced lipid peroxidation and protein oxidation. Significant reductions in the total contents of phospholipid and unbiquinone-10, as well as in the levels of the 3 and 7 subunit proteins of nAChRs were detected in cells exposed to Aβ1–42. In contrast, such treatment had no effect on the total cellular content of cholesterol. Among these alterations, increased lipid peroxidation and decreased levels of cellular phospholipids were most sensitive to Aβ1–42, occurring at lower concentrations. In addition, when SH-SY5Y cells were pretreated with the antioxidant Vitamin E, prior to the addition of Aβ1–42, these alterations in neurotoxicity, oxidative stress, composition of membrane lipids and expression of nAChRs were partially prevented. These findings suggest that stimulation of lipid peroxidation by Aβ may be involved in eliciting the alterations in membrane lipid composition and the reduced expression of nAChRs associated with the pathogenesis of AD.  相似文献   
26.
pEGFP-N1质粒转染乳鼠心肌细胞的分布及效率   总被引:3,自引:0,他引:3  
目的: 研究pEGFP-N1质粒转染心肌细胞的分布及效率.方法: 培养乳鼠心肌细胞,根据乳鼠心肌细胞的不同生长时间(1~3 d)进行pEGFP-N1质粒转染心肌细胞的实验研究.结果: 乳鼠心肌细胞生长1 d时,pEGFP-N1质粒转染心肌细胞的效率显著高于乳鼠心肌细胞生长2 d、3 d时;pEGFP-N1质粒转染心肌细胞后EGFP均匀地充满胞浆和胞核.结论: pEGFP-N1质粒转染乳鼠心肌细胞的效率与心肌细胞的生长期有关;EGFP在心肌细胞中均匀分布于胞浆和胞核.  相似文献   
27.
Ma CW  Xiu ZL  Zeng AP 《PloS one》2011,6(10):e26453
Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term "protein dynamical modules" based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine.  相似文献   
28.
29.
Hu F  Zha D  Du R  Chen X  Zhou B  Xiu J  Bin J  Liu Y 《Biorheology》2011,48(3-4):149-159
Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study is to examine the effects of DRPs on microcirculation in rat hind limb during acute femoral artery occlusion. Two groups of 20 male Wistar rats were subjected to either hemodynamic measurement or contrast enhanced ultrasound (CEU) imaging during peripheral ischemia. Both groups were further subdivided into a DRP-treated group or a saline-treated group. Polyethylene oxide (PEO) was chosen as the test DRP, and rats were injected with either 10 ppm PEO solution or saline through the caudal vein at a constant rate of 5 ml/h for 20 min. Abdominal aortic flow, iliac artery pressure, iliac vein pressure, heart rate, carotid artery pressure and central venous pressure (CVP) were monitored, and vascular resistance was calculated by (iliac artery pressure-iliac vein pressure)/abdominal aortic blood flow. Flow perfusion and capillary volume of skeletal muscle were measured by CEU. During PEO infusion, abdominal aortic blood flow increased (p<0.001) and vascular resistance decreased (p<0.001) compared to rats that received saline during peripheral ischemia. There was no significant change in ischemic skeletal capillary volume (A) with DRP treatment (p>0.05), but red blood cell velocity (β) and capillary blood flow (A×β) increased significantly (p<0.05) during PEO infusion. In addition, A, β and A×β all increased (p<0.05) in the contralateral hind limb muscle. In contrast, PEO had no significant influence on heart rate, mean carotid artery blood pressure or CVP. Intravenous infusion of drag reducing polymers may offer a novel hydrodynamic approach for improving microcirculation during acute peripheral ischemia.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号